sage:E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 1584.g
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
1584.g1 |
1584p3 |
[0,0,0,−1126128,−459970256] |
−52893159101157376/11 |
−32845824 |
[] |
6000 |
1.7392
|
|
1584.g2 |
1584p2 |
[0,0,0,−1488,−40016] |
−122023936/161051 |
−480895709184 |
[] |
1200 |
0.93444
|
|
1584.g3 |
1584p1 |
[0,0,0,−48,304] |
−4096/11 |
−32845824 |
[] |
240 |
0.12972
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 1584.g have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
11 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+T+5T2 |
1.5.b
|
7 |
1−2T+7T2 |
1.7.ac
|
13 |
1−4T+13T2 |
1.13.ae
|
17 |
1−2T+17T2 |
1.17.ac
|
19 |
1+19T2 |
1.19.a
|
23 |
1+T+23T2 |
1.23.b
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 1584.g do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎛15255152551⎠⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.