Properties

Label 1584.q
Number of curves 11
Conductor 15841584
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Elliptic curves in class 1584.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1584.q1 1584d1 [0,0,0,36,108][0, 0, 0, -36, 108] 27648/11-27648/11 2052864-2052864 [][] 224224 0.079906-0.079906 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 1584.q1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
11111+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 13T+5T2 1 - 3 T + 5 T^{2} 1.5.ad
77 12T+7T2 1 - 2 T + 7 T^{2} 1.7.ac
1313 1+13T2 1 + 13 T^{2} 1.13.a
1717 16T+17T2 1 - 6 T + 17 T^{2} 1.17.ag
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 1T+23T2 1 - T + 23 T^{2} 1.23.ab
2929 18T+29T2 1 - 8 T + 29 T^{2} 1.29.ai
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1584.q do not have complex multiplication.

Modular form 1584.2.a.q

Copy content sage:E.q_eigenform(10)
 
q+3q5+2q7q11+6q174q19+O(q20)q + 3 q^{5} + 2 q^{7} - q^{11} + 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display