E = EllipticCurve("fr1")
E.isogeny_class()
Elliptic curves in class 158400fr
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
158400.ou3 |
158400fr1 |
[0,0,0,−4537800,3720627000] |
885956203616256/15125 |
176418000000000 |
[2] |
3538944 |
2.2756
|
Γ0(N)-optimal |
158400.ou2 |
158400fr2 |
[0,0,0,−4542300,3712878000] |
55537159171536/228765625 |
42693156000000000000 |
[2,2] |
7077888 |
2.6221
|
|
158400.ou4 |
158400fr3 |
[0,0,0,−2364300,7280442000] |
−1957960715364/29541015625 |
−22052250000000000000000 |
[2] |
14155776 |
2.9687
|
|
158400.ou1 |
158400fr4 |
[0,0,0,−6792300,−350622000] |
46424454082884/26794860125 |
20002255903872000000000 |
[2] |
14155776 |
2.9687
|
|
The elliptic curves in class 158400fr have
rank 0.
The elliptic curves in class 158400fr do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.