Properties

Label 15888s
Number of curves 11
Conductor 1588815888
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("s1")
 
E.isogeny_class()
 

Elliptic curves in class 15888s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15888.w1 15888s1 [0,1,0,15,18][0, 1, 0, 15, -18] 21807104/2681121807104/26811 428976-428976 [][] 13441344 0.23313-0.23313 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 15888s1 has rank 11.

Complex multiplication

The elliptic curves in class 15888s do not have complex multiplication.

Modular form 15888.2.a.s

sage: E.q_eigenform(10)
 
q+q3+q5+2q7+q9+2q13+q153q177q19+O(q20)q + q^{3} + q^{5} + 2 q^{7} + q^{9} + 2 q^{13} + q^{15} - 3 q^{17} - 7 q^{19} + O(q^{20}) Copy content Toggle raw display