Show commands:
SageMath
E = EllipticCurve("w1")
E.isogeny_class()
Elliptic curves in class 159201.w
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
159201.w1 | 159201x1 | \([0, 0, 1, 0, -547576262]\) | \(0\) | \(-129530777370669149643\) | \([]\) | \(3102624\) | \(2.5381\) | \(\Gamma_0(N)\)-optimal | \(-3\) |
159201.w2 | 159201x2 | \([0, 0, 1, 0, 14784559067]\) | \(0\) | \(-94427936703217810089747\) | \([]\) | \(9307872\) | \(3.0874\) | \(-3\) |
Rank
sage: E.rank()
The elliptic curves in class 159201.w have rank \(0\).
Complex multiplication
Each elliptic curve in class 159201.w has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).Modular form 159201.2.a.w
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.