Properties

Label 159201.w
Number of curves 22
Conductor 159201159201
CM Q(3)\Q(\sqrt{-3})
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("w1")
 
E.isogeny_class()
 

Elliptic curves in class 159201.w

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
159201.w1 159201x1 [0,0,1,0,547576262][0, 0, 1, 0, -547576262] 00 129530777370669149643-129530777370669149643 [][] 31026243102624 2.53812.5381 Γ0(N)\Gamma_0(N)-optimal 3-3
159201.w2 159201x2 [0,0,1,0,14784559067][0, 0, 1, 0, 14784559067] 00 94427936703217810089747-94427936703217810089747 [][] 93078729307872 3.08743.0874   3-3

Rank

sage: E.rank()
 

The elliptic curves in class 159201.w have rank 00.

Complex multiplication

Each elliptic curve in class 159201.w has complex multiplication by an order in the imaginary quadratic field Q(3)\Q(\sqrt{-3}) .

Modular form 159201.2.a.w

sage: E.q_eigenform(10)
 
q2q45q13+4q16+O(q20)q - 2 q^{4} - 5 q^{13} + 4 q^{16} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.