Properties

Label 159201.w
Number of curves $2$
Conductor $159201$
CM \(\Q(\sqrt{-3}) \)
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("w1")
 
E.isogeny_class()
 

Elliptic curves in class 159201.w

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
159201.w1 159201x1 \([0, 0, 1, 0, -547576262]\) \(0\) \(-129530777370669149643\) \([]\) \(3102624\) \(2.5381\) \(\Gamma_0(N)\)-optimal \(-3\)
159201.w2 159201x2 \([0, 0, 1, 0, 14784559067]\) \(0\) \(-94427936703217810089747\) \([]\) \(9307872\) \(3.0874\)   \(-3\)

Rank

sage: E.rank()
 

The elliptic curves in class 159201.w have rank \(0\).

Complex multiplication

Each elliptic curve in class 159201.w has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).

Modular form 159201.2.a.w

sage: E.q_eigenform(10)
 
\(q - 2 q^{4} - 5 q^{13} + 4 q^{16} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.