Properties

Label 159201.y
Number of curves $2$
Conductor $159201$
CM \(\Q(\sqrt{-3}) \)
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("y1")
 
E.isogeny_class()
 

Elliptic curves in class 159201.y

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
159201.y1 159201bc1 \([0, 0, 1, 0, -30332213]\) \(0\) \(-397458632294465427\) \([]\) \(960336\) \(2.0559\) \(\Gamma_0(N)\)-optimal \(-3\)
159201.y2 159201bc2 \([0, 0, 1, 0, 818969744]\) \(0\) \(-289747342942665296283\) \([]\) \(2881008\) \(2.6052\)   \(-3\)

Rank

sage: E.rank()
 

The elliptic curves in class 159201.y have rank \(0\).

Complex multiplication

Each elliptic curve in class 159201.y has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).

Modular form 159201.2.a.y

sage: E.q_eigenform(10)
 
\(q - 2 q^{4} - 2 q^{13} + 4 q^{16} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.