Show commands:
SageMath
E = EllipticCurve("t1")
E.isogeny_class()
Elliptic curves in class 159201t
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
159201.t2 | 159201t1 | \([0, 0, 1, -16758, 835805]\) | \(-884736\) | \(-588269823939\) | \([]\) | \(211200\) | \(1.1721\) | \(\Gamma_0(N)\)-optimal | \(-19\) |
159201.t1 | 159201t2 | \([0, 0, 1, -6049638, -5732788210]\) | \(-884736\) | \(-27675672132925145259\) | \([]\) | \(4012800\) | \(2.6443\) | \(-19\) |
Rank
sage: E.rank()
The elliptic curves in class 159201t have rank \(1\).
Complex multiplication
Each elliptic curve in class 159201t has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-19}) \).Modular form 159201.2.a.t
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 19 \\ 19 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.