Properties

Label 159201t
Number of curves 22
Conductor 159201159201
CM Q(19)\Q(\sqrt{-19})
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 159201t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
159201.t2 159201t1 [0,0,1,16758,835805][0, 0, 1, -16758, 835805] 884736-884736 588269823939-588269823939 [][] 211200211200 1.17211.1721 Γ0(N)\Gamma_0(N)-optimal 19-19
159201.t1 159201t2 [0,0,1,6049638,5732788210][0, 0, 1, -6049638, -5732788210] 884736-884736 27675672132925145259-27675672132925145259 [][] 40128004012800 2.64432.6443   19-19

Rank

sage: E.rank()
 

The elliptic curves in class 159201t have rank 11.

Complex multiplication

Each elliptic curve in class 159201t has complex multiplication by an order in the imaginary quadratic field Q(19)\Q(\sqrt{-19}) .

Modular form 159201.2.a.t

sage: E.q_eigenform(10)
 
q2q4q5+5q11+4q167q17+O(q20)q - 2 q^{4} - q^{5} + 5 q^{11} + 4 q^{16} - 7 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(119191)\left(\begin{array}{rr} 1 & 19 \\ 19 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.