Properties

Label 159201t
Number of curves $2$
Conductor $159201$
CM \(\Q(\sqrt{-19}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 159201t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
159201.t2 159201t1 \([0, 0, 1, -16758, 835805]\) \(-884736\) \(-588269823939\) \([]\) \(211200\) \(1.1721\) \(\Gamma_0(N)\)-optimal \(-19\)
159201.t1 159201t2 \([0, 0, 1, -6049638, -5732788210]\) \(-884736\) \(-27675672132925145259\) \([]\) \(4012800\) \(2.6443\)   \(-19\)

Rank

sage: E.rank()
 

The elliptic curves in class 159201t have rank \(1\).

Complex multiplication

Each elliptic curve in class 159201t has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-19}) \).

Modular form 159201.2.a.t

sage: E.q_eigenform(10)
 
\(q - 2 q^{4} - q^{5} + 5 q^{11} + 4 q^{16} - 7 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 19 \\ 19 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.