Properties

Label 15a2
Conductor 1515
Discriminant 164025164025
j-invariant 272223782641164025 \frac{272223782641}{164025}
CM no
Rank 00
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

This is the Frey curve for the triple 1+80=811 + 80 = 81 (or in factored form, 1+245=341 + 2^4 \cdot 5 = 3^4).

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+x2135x660y^2+xy+y=x^3+x^2-135x-660 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+x2z135xz2660z3y^2z+xyz+yz^2=x^3+x^2z-135xz^2-660z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3174987x28159866y^2=x^3-174987x-28159866 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 1, -135, -660])
 
gp: E = ellinit([1, 1, 1, -135, -660])
 
magma: E := EllipticCurve([1, 1, 1, -135, -660]);
 
oscar: E = elliptic_curve([1, 1, 1, -135, -660])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(7,3)(-7, 3)0022
(13,7)(13, -7)0022

Integral points

(7,3) \left(-7, 3\right) , (13,7) \left(13, -7\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  15 15  = 353 \cdot 5
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  164025164025 = 38523^{8} \cdot 5^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  272223782641164025 \frac{272223782641}{164025}  = 3852648133^{-8} \cdot 5^{-2} \cdot 6481^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.055703981802871132734980436436-0.055703981802871132734980436436
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.055703981802871132734980436436-0.055703981802871132734980436436
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.0389720116517391.038972011651739
Szpiro ratio: σm\sigma_{m} ≈ 9.722822082310949.72282208231094

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.40060304233260202318018083681.4006030423326020231801808368
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 22 2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.350150760583150505795045209200.35015076058315050579504520920
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.350150761L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.4006031.0000004420.350150761\displaystyle 0.350150761 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.400603 \cdot 1.000000 \cdot 4}{4^2} \approx 0.350150761

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   15.2.a.a

qq2q3q4+q5+q6+3q8+q9q104q11+q122q13q15q16+2q17q18+4q19+O(q20) q - q^{2} - q^{3} - q^{4} + q^{5} + q^{6} + 3 q^{8} + q^{9} - q^{10} - 4 q^{11} + q^{12} - 2 q^{13} - q^{15} - q^{16} + 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 I8I_{8} nonsplit multiplicative 1 1 8 8
55 22 I2I_{2} split multiplicative -1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 8.96.0.58

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 16, 1], [1, 16, 0, 1], [9, 8, 178, 215], [161, 8, 0, 1], [61, 8, 170, 197], [1, 16, 4, 65], [1, 16, 0, 181], [225, 16, 224, 17]]
 
GL(2,Integers(240)).subgroup(gens)
 
Gens := [[1, 0, 16, 1], [1, 16, 0, 1], [9, 8, 178, 215], [161, 8, 0, 1], [61, 8, 170, 197], [1, 16, 4, 65], [1, 16, 0, 181], [225, 16, 224, 17]];
 
sub<GL(2,Integers(240))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 240=2435 240 = 2^{4} \cdot 3 \cdot 5 , index 768768, genus 1313, and generators

(10161),(11601),(98178215),(161801),(618170197),(116465),(1160181),(2251622417)\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9 & 8 \\ 178 & 215 \end{array}\right),\left(\begin{array}{rr} 161 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 61 & 8 \\ 170 & 197 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 181 \end{array}\right),\left(\begin{array}{rr} 225 & 16 \\ 224 & 17 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[240])K:=\Q(E[240]) is a degree-737280737280 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/240Z)\GL_2(\Z/240\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 1 1
33 nonsplit multiplicative 44 5 5
55 split multiplicative 66 3 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 15a consists of 8 curves linked by isogenies of degrees dividing 16.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(5)\Q(\sqrt{5}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z 2.2.5.1-45.1-a7
22 Q(1)\Q(\sqrt{-1}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z 2.0.4.1-225.2-a8
22 Q(5)\Q(\sqrt{-5}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(i,5)\Q(i, \sqrt{5}) Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
44 Q(ζ8)\Q(\zeta_{8}) Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
44 Q(i,10)\Q(i, \sqrt{10}) Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
44 4.2.2000.1 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.0.1024000000.6 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
88 8.0.64000000.3 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
88 8.0.40960000.1 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
88 8.2.110716875.2 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 16.0.16777216000000000000.3 Z/8ZZ/8Z\Z/8\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 16.0.450868486864896000000000000.9 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 16.0.450868486864896000000000000.8 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5
Reduction type ord nonsplit split
λ\lambda-invariant(s) 0 0 1
μ\mu-invariant(s) 2 0 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p3p\ge 3 of good reduction are zero.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.