Show commands:
SageMath
E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 1600.j
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1600.j1 | 1600j2 | \([0, -1, 0, -8033, -274463]\) | \(-349938025/8\) | \(-1310720000\) | \([]\) | \(1152\) | \(0.86293\) | |
1600.j2 | 1600j3 | \([0, -1, 0, -4833, 157537]\) | \(-121945/32\) | \(-3276800000000\) | \([]\) | \(1920\) | \(1.1183\) | |
1600.j3 | 1600j1 | \([0, -1, 0, -33, -863]\) | \(-25/2\) | \(-327680000\) | \([]\) | \(384\) | \(0.31362\) | \(\Gamma_0(N)\)-optimal |
1600.j4 | 1600j4 | \([0, -1, 0, 35167, -1162463]\) | \(46969655/32768\) | \(-3355443200000000\) | \([]\) | \(5760\) | \(1.6676\) |
Rank
sage: E.rank()
The elliptic curves in class 1600.j have rank \(0\).
Complex multiplication
The elliptic curves in class 1600.j do not have complex multiplication.Modular form 1600.2.a.j
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 15 & 3 & 5 \\ 15 & 1 & 5 & 3 \\ 3 & 5 & 1 & 15 \\ 5 & 3 & 15 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.