Show commands:
SageMath
E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 1600.o
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1600.o1 | 1600a3 | \([0, 0, 0, -10700, -426000]\) | \(132304644/5\) | \(5120000000\) | \([2]\) | \(1536\) | \(0.94908\) | |
1600.o2 | 1600a2 | \([0, 0, 0, -700, -6000]\) | \(148176/25\) | \(6400000000\) | \([2, 2]\) | \(768\) | \(0.60250\) | |
1600.o3 | 1600a1 | \([0, 0, 0, -200, 1000]\) | \(55296/5\) | \(80000000\) | \([2]\) | \(384\) | \(0.25593\) | \(\Gamma_0(N)\)-optimal |
1600.o4 | 1600a4 | \([0, 0, 0, 1300, -34000]\) | \(237276/625\) | \(-640000000000\) | \([2]\) | \(1536\) | \(0.94908\) |
Rank
sage: E.rank()
The elliptic curves in class 1600.o have rank \(1\).
Complex multiplication
The elliptic curves in class 1600.o do not have complex multiplication.Modular form 1600.2.a.o
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.