sage:E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 1600.o
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
1600.o1 |
1600a3 |
[0,0,0,−10700,−426000] |
132304644/5 |
5120000000 |
[2] |
1536 |
0.94908
|
|
1600.o2 |
1600a2 |
[0,0,0,−700,−6000] |
148176/25 |
6400000000 |
[2,2] |
768 |
0.60250
|
|
1600.o3 |
1600a1 |
[0,0,0,−200,1000] |
55296/5 |
80000000 |
[2] |
384 |
0.25593
|
Γ0(N)-optimal |
1600.o4 |
1600a4 |
[0,0,0,1300,−34000] |
237276/625 |
−640000000000 |
[2] |
1536 |
0.94908
|
|
sage:E.rank()
The elliptic curves in class 1600.o have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+3T2 |
1.3.a
|
7 |
1−4T+7T2 |
1.7.ae
|
11 |
1+4T+11T2 |
1.11.e
|
13 |
1+2T+13T2 |
1.13.c
|
17 |
1+2T+17T2 |
1.17.c
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1−2T+29T2 |
1.29.ac
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 1600.o do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.