Properties

Label 1600.o
Number of curves 44
Conductor 16001600
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Elliptic curves in class 1600.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1600.o1 1600a3 [0,0,0,10700,426000][0, 0, 0, -10700, -426000] 132304644/5132304644/5 51200000005120000000 [2][2] 15361536 0.949080.94908  
1600.o2 1600a2 [0,0,0,700,6000][0, 0, 0, -700, -6000] 148176/25148176/25 64000000006400000000 [2,2][2, 2] 768768 0.602500.60250  
1600.o3 1600a1 [0,0,0,200,1000][0, 0, 0, -200, 1000] 55296/555296/5 8000000080000000 [2][2] 384384 0.255930.25593 Γ0(N)\Gamma_0(N)-optimal
1600.o4 1600a4 [0,0,0,1300,34000][0, 0, 0, 1300, -34000] 237276/625237276/625 640000000000-640000000000 [2][2] 15361536 0.949080.94908  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1600.o have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
5511
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+3T2 1 + 3 T^{2} 1.3.a
77 14T+7T2 1 - 4 T + 7 T^{2} 1.7.ae
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 1+4T+23T2 1 + 4 T + 23 T^{2} 1.23.e
2929 12T+29T2 1 - 2 T + 29 T^{2} 1.29.ac
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1600.o do not have complex multiplication.

Modular form 1600.2.a.o

Copy content sage:E.q_eigenform(10)
 
q+4q73q94q112q132q174q19+O(q20)q + 4 q^{7} - 3 q^{9} - 4 q^{11} - 2 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.