Show commands:
SageMath
E = EllipticCurve("q1")
E.isogeny_class()
Elliptic curves in class 1600.q
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1600.q1 | 1600c4 | \([0, 1, 0, -200833, -34709537]\) | \(-349938025/8\) | \(-20480000000000\) | \([]\) | \(5760\) | \(1.6676\) | |
1600.q2 | 1600c3 | \([0, 1, 0, -833, -109537]\) | \(-25/2\) | \(-5120000000000\) | \([]\) | \(1920\) | \(1.1183\) | |
1600.q3 | 1600c1 | \([0, 1, 0, -193, 1183]\) | \(-121945/32\) | \(-209715200\) | \([]\) | \(384\) | \(0.31362\) | \(\Gamma_0(N)\)-optimal |
1600.q4 | 1600c2 | \([0, 1, 0, 1407, -8737]\) | \(46969655/32768\) | \(-214748364800\) | \([]\) | \(1152\) | \(0.86293\) |
Rank
sage: E.rank()
The elliptic curves in class 1600.q have rank \(1\).
Complex multiplication
The elliptic curves in class 1600.q do not have complex multiplication.Modular form 1600.2.a.q
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 15 & 5 \\ 3 & 1 & 5 & 15 \\ 15 & 5 & 1 & 3 \\ 5 & 15 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.