Properties

Label 162.b
Number of curves 44
Conductor 162162
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 162.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162.b1 162c3 [1,1,0,1077,13877][1, -1, 0, -1077, 13877] 189613868625/128-189613868625/128 93312-93312 [3][3] 4242 0.269370.26937  
162.b2 162c4 [1,1,0,852,19664][1, -1, 0, -852, 19664] 1159088625/2097152-1159088625/2097152 123834728448-123834728448 [][] 126126 0.818670.81867  
162.b3 162c2 [1,1,0,42,100][1, -1, 0, -42, -100] 140625/8-140625/8 472392-472392 [][] 1818 0.15428-0.15428  
162.b4 162c1 [1,1,0,3,1][1, -1, 0, 3, -1] 3375/23375/2 1458-1458 [3][3] 66 0.70359-0.70359 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 162.b have rank 00.

Complex multiplication

The elliptic curves in class 162.b do not have complex multiplication.

Modular form 162.2.a.b

sage: E.q_eigenform(10)
 
qq2+q4+2q7q8+3q11+2q132q14+q16+3q17q19+O(q20)q - q^{2} + q^{4} + 2 q^{7} - q^{8} + 3 q^{11} + 2 q^{13} - 2 q^{14} + q^{16} + 3 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(13217317212171372131)\left(\begin{array}{rrrr} 1 & 3 & 21 & 7 \\ 3 & 1 & 7 & 21 \\ 21 & 7 & 1 & 3 \\ 7 & 21 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.