Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 162.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
162.b1 | 162c3 | \([1, -1, 0, -1077, 13877]\) | \(-189613868625/128\) | \(-93312\) | \([3]\) | \(42\) | \(0.26937\) | |
162.b2 | 162c4 | \([1, -1, 0, -852, 19664]\) | \(-1159088625/2097152\) | \(-123834728448\) | \([]\) | \(126\) | \(0.81867\) | |
162.b3 | 162c2 | \([1, -1, 0, -42, -100]\) | \(-140625/8\) | \(-472392\) | \([]\) | \(18\) | \(-0.15428\) | |
162.b4 | 162c1 | \([1, -1, 0, 3, -1]\) | \(3375/2\) | \(-1458\) | \([3]\) | \(6\) | \(-0.70359\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 162.b have rank \(0\).
Complex multiplication
The elliptic curves in class 162.b do not have complex multiplication.Modular form 162.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 21 & 7 \\ 3 & 1 & 7 & 21 \\ 21 & 7 & 1 & 3 \\ 7 & 21 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.