Properties

Label 162.b
Number of curves $4$
Conductor $162$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 162.b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 162.b do not have complex multiplication.

Modular form 162.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{7} - q^{8} + 3 q^{11} + 2 q^{13} - 2 q^{14} + q^{16} + 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 21 & 7 \\ 3 & 1 & 7 & 21 \\ 21 & 7 & 1 & 3 \\ 7 & 21 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 162.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162.b1 162c3 \([1, -1, 0, -1077, 13877]\) \(-189613868625/128\) \(-93312\) \([3]\) \(42\) \(0.26937\)  
162.b2 162c4 \([1, -1, 0, -852, 19664]\) \(-1159088625/2097152\) \(-123834728448\) \([]\) \(126\) \(0.81867\)  
162.b3 162c2 \([1, -1, 0, -42, -100]\) \(-140625/8\) \(-472392\) \([]\) \(18\) \(-0.15428\)  
162.b4 162c1 \([1, -1, 0, 3, -1]\) \(3375/2\) \(-1458\) \([3]\) \(6\) \(-0.70359\) \(\Gamma_0(N)\)-optimal