Properties

Label 162.b
Number of curves $4$
Conductor $162$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 162.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162.b1 162c3 \([1, -1, 0, -1077, 13877]\) \(-189613868625/128\) \(-93312\) \([3]\) \(42\) \(0.26937\)  
162.b2 162c4 \([1, -1, 0, -852, 19664]\) \(-1159088625/2097152\) \(-123834728448\) \([]\) \(126\) \(0.81867\)  
162.b3 162c2 \([1, -1, 0, -42, -100]\) \(-140625/8\) \(-472392\) \([]\) \(18\) \(-0.15428\)  
162.b4 162c1 \([1, -1, 0, 3, -1]\) \(3375/2\) \(-1458\) \([3]\) \(6\) \(-0.70359\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 162.b have rank \(0\).

Complex multiplication

The elliptic curves in class 162.b do not have complex multiplication.

Modular form 162.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{7} - q^{8} + 3 q^{11} + 2 q^{13} - 2 q^{14} + q^{16} + 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 21 & 7 \\ 3 & 1 & 7 & 21 \\ 21 & 7 & 1 & 3 \\ 7 & 21 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.