Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 1620.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1620.c1 | 1620a2 | \([0, 0, 0, -8208, 116532]\) | \(4045602816/1953125\) | \(29524500000000\) | \([]\) | \(3888\) | \(1.2783\) | |
1620.c2 | 1620a1 | \([0, 0, 0, -6768, 214308]\) | \(183711891456/125\) | \(23328000\) | \([3]\) | \(1296\) | \(0.72902\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1620.c have rank \(0\).
Complex multiplication
The elliptic curves in class 1620.c do not have complex multiplication.Modular form 1620.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.