Properties

Label 1620e
Number of curves $2$
Conductor $1620$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 1620e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1620.d2 1620e1 \([0, 0, 0, -72, 36]\) \(221184/125\) \(23328000\) \([3]\) \(432\) \(0.10377\) \(\Gamma_0(N)\)-optimal
1620.d1 1620e2 \([0, 0, 0, -3672, -85644]\) \(362225664/5\) \(75582720\) \([]\) \(1296\) \(0.65307\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1620e have rank \(1\).

Complex multiplication

The elliptic curves in class 1620e do not have complex multiplication.

Modular form 1620.2.a.e

sage: E.q_eigenform(10)
 
\(q + q^{5} - 4 q^{7} + 3 q^{11} - 4 q^{13} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.