Properties

Label 1620e
Number of curves 22
Conductor 16201620
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 1620e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1620.d2 1620e1 [0,0,0,72,36][0, 0, 0, -72, 36] 221184/125221184/125 2332800023328000 [3][3] 432432 0.103770.10377 Γ0(N)\Gamma_0(N)-optimal
1620.d1 1620e2 [0,0,0,3672,85644][0, 0, 0, -3672, -85644] 362225664/5362225664/5 7558272075582720 [][] 12961296 0.653070.65307  

Rank

sage: E.rank()
 

The elliptic curves in class 1620e have rank 11.

Complex multiplication

The elliptic curves in class 1620e do not have complex multiplication.

Modular form 1620.2.a.e

sage: E.q_eigenform(10)
 
q+q54q7+3q114q13+5q19+O(q20)q + q^{5} - 4 q^{7} + 3 q^{11} - 4 q^{13} + 5 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.