Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 1620e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1620.d2 | 1620e1 | \([0, 0, 0, -72, 36]\) | \(221184/125\) | \(23328000\) | \([3]\) | \(432\) | \(0.10377\) | \(\Gamma_0(N)\)-optimal |
1620.d1 | 1620e2 | \([0, 0, 0, -3672, -85644]\) | \(362225664/5\) | \(75582720\) | \([]\) | \(1296\) | \(0.65307\) |
Rank
sage: E.rank()
The elliptic curves in class 1620e have rank \(1\).
Complex multiplication
The elliptic curves in class 1620e do not have complex multiplication.Modular form 1620.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.