Properties

Label 162240.u
Number of curves $4$
Conductor $162240$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("u1")
 
E.isogeny_class()
 

Elliptic curves in class 162240.u

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
162240.u1 162240ds3 \([0, -1, 0, -5229761, 4604242785]\) \(12501706118329/2570490\) \(3252489883853783040\) \([2]\) \(4128768\) \(2.5492\)  
162240.u2 162240ds2 \([0, -1, 0, -362561, 55357665]\) \(4165509529/1368900\) \(1732095204419174400\) \([2, 2]\) \(2064384\) \(2.2027\)  
162240.u3 162240ds1 \([0, -1, 0, -146241, -20830239]\) \(273359449/9360\) \(11843386013122560\) \([2]\) \(1032192\) \(1.8561\) \(\Gamma_0(N)\)-optimal
162240.u4 162240ds4 \([0, -1, 0, 1043519, 379037281]\) \(99317171591/106616250\) \(-134903568805724160000\) \([2]\) \(4128768\) \(2.5492\)  

Rank

sage: E.rank()
 

The elliptic curves in class 162240.u have rank \(0\).

Complex multiplication

The elliptic curves in class 162240.u do not have complex multiplication.

Modular form 162240.2.a.u

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} + q^{15} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.