Properties

Label 16245.k
Number of curves 22
Conductor 1624516245
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 16245.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16245.k1 16245k2 [1,1,0,303849,62723970][1, -1, 0, -303849, -62723970] 90458382169/267187590458382169/2671875 9163581999342187591635819993421875 [2][2] 138240138240 2.03192.0319  
16245.k2 16245k1 [1,1,0,4806,3277017][1, -1, 0, 4806, -3277017] 357911/135375357911/135375 4642881546333375-4642881546333375 [2][2] 6912069120 1.68531.6853 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 16245.k have rank 00.

Complex multiplication

The elliptic curves in class 16245.k do not have complex multiplication.

Modular form 16245.2.a.k

sage: E.q_eigenform(10)
 
q+q2q4+q52q73q8+q10+2q11+4q132q14q162q17+O(q20)q + q^{2} - q^{4} + q^{5} - 2 q^{7} - 3 q^{8} + q^{10} + 2 q^{11} + 4 q^{13} - 2 q^{14} - q^{16} - 2 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.