sage:E = EllipticCurve("ba1")
E.isogeny_class()
Elliptic curves in class 163170ba
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
163170.ds1 |
163170ba1 |
[1,−1,1,−23603,1401621] |
−16954786009/370 |
−31733464770 |
[] |
326592 |
1.1310
|
Γ0(N)-optimal |
163170.ds2 |
163170ba2 |
[1,−1,1,−8168,3185907] |
−702595369/50653000 |
−4344311327013000 |
[] |
979776 |
1.6804
|
|
163170.ds3 |
163170ba3 |
[1,−1,1,73417,−85382769] |
510273943271/37000000000 |
−3173346477000000000 |
[] |
2939328 |
2.2297
|
|
sage:E.rank()
The elliptic curves in class 163170ba have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1 |
5 | 1+T |
7 | 1 |
37 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1−T+11T2 |
1.11.ab
|
13 |
1−2T+13T2 |
1.13.ac
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1−T+19T2 |
1.19.ab
|
23 |
1+T+23T2 |
1.23.b
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 163170ba do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎛139313931⎠⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.