Properties

Label 163170ba
Number of curves $3$
Conductor $163170$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ba1")
 
E.isogeny_class()
 

Elliptic curves in class 163170ba

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
163170.ds1 163170ba1 \([1, -1, 1, -23603, 1401621]\) \(-16954786009/370\) \(-31733464770\) \([]\) \(326592\) \(1.1310\) \(\Gamma_0(N)\)-optimal
163170.ds2 163170ba2 \([1, -1, 1, -8168, 3185907]\) \(-702595369/50653000\) \(-4344311327013000\) \([]\) \(979776\) \(1.6804\)  
163170.ds3 163170ba3 \([1, -1, 1, 73417, -85382769]\) \(510273943271/37000000000\) \(-3173346477000000000\) \([]\) \(2939328\) \(2.2297\)  

Rank

sage: E.rank()
 

The elliptic curves in class 163170ba have rank \(1\).

Complex multiplication

The elliptic curves in class 163170ba do not have complex multiplication.

Modular form 163170.2.a.ba

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} + q^{8} - q^{10} - 3 q^{11} + 4 q^{13} + q^{16} + 3 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.