sage:E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 1638.c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
1638.c1 |
1638e3 |
[1,−1,0,−532203,−149255515] |
22868021811807457713/8953460393696 |
6527072627004384 |
[2] |
23040 |
1.9993
|
|
1638.c2 |
1638e4 |
[1,−1,0,−281643,56492261] |
3389174547561866673/74853681183008 |
54568333582412832 |
[2] |
23040 |
1.9993
|
|
1638.c3 |
1638e2 |
[1,−1,0,−38283,−1573435] |
8511781274893233/3440817243136 |
2508355770246144 |
[2,2] |
11520 |
1.6527
|
|
1638.c4 |
1638e1 |
[1,−1,0,7797,−181819] |
71903073502287/60782804992 |
−44310664839168 |
[2] |
5760 |
1.3062
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 1638.c have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1 |
7 | 1+T |
13 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+2T+5T2 |
1.5.c
|
11 |
1+4T+11T2 |
1.11.e
|
17 |
1−6T+17T2 |
1.17.ag
|
19 |
1+19T2 |
1.19.a
|
23 |
1+8T+23T2 |
1.23.i
|
29 |
1−10T+29T2 |
1.29.ak
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 1638.c do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.