Properties

Label 1638.c
Number of curves 44
Conductor 16381638
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Elliptic curves in class 1638.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1638.c1 1638e3 [1,1,0,532203,149255515][1, -1, 0, -532203, -149255515] 22868021811807457713/895346039369622868021811807457713/8953460393696 65270726270043846527072627004384 [2][2] 2304023040 1.99931.9993  
1638.c2 1638e4 [1,1,0,281643,56492261][1, -1, 0, -281643, 56492261] 3389174547561866673/748536811830083389174547561866673/74853681183008 5456833358241283254568333582412832 [2][2] 2304023040 1.99931.9993  
1638.c3 1638e2 [1,1,0,38283,1573435][1, -1, 0, -38283, -1573435] 8511781274893233/34408172431368511781274893233/3440817243136 25083557702461442508355770246144 [2,2][2, 2] 1152011520 1.65271.6527  
1638.c4 1638e1 [1,1,0,7797,181819][1, -1, 0, 7797, -181819] 71903073502287/6078280499271903073502287/60782804992 44310664839168-44310664839168 [2][2] 57605760 1.30621.3062 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1638.c have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
3311
771+T1 + T
13131+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 1+2T+5T2 1 + 2 T + 5 T^{2} 1.5.c
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1717 16T+17T2 1 - 6 T + 17 T^{2} 1.17.ag
1919 1+19T2 1 + 19 T^{2} 1.19.a
2323 1+8T+23T2 1 + 8 T + 23 T^{2} 1.23.i
2929 110T+29T2 1 - 10 T + 29 T^{2} 1.29.ak
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1638.c do not have complex multiplication.

Modular form 1638.2.a.c

Copy content sage:E.q_eigenform(10)
 
qq2+q42q5q7q8+2q104q11q13+q14+q16+6q17+O(q20)q - q^{2} + q^{4} - 2 q^{5} - q^{7} - q^{8} + 2 q^{10} - 4 q^{11} - q^{13} + q^{14} + q^{16} + 6 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.