Properties

Label 1638.l
Number of curves 33
Conductor 16381638
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 1638.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1638.l1 1638t3 [1,1,1,234509,43769909][1, -1, 1, -234509, 43769909] 1956469094246217097/36641439744-1956469094246217097/36641439744 26711609573376-26711609573376 [3][3] 1555215552 1.70081.7008  
1638.l2 1638t2 [1,1,1,1094,133589][1, -1, 1, -1094, 133589] 198461344537/10417365504-198461344537/10417365504 7594259452416-7594259452416 [3][3] 51845184 1.15151.1515  
1638.l3 1638t1 [1,1,1,121,4921][1, -1, 1, 121, -4921] 270840023/14329224270840023/14329224 10446004296-10446004296 [][] 17281728 0.602150.60215 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1638.l have rank 11.

Complex multiplication

The elliptic curves in class 1638.l do not have complex multiplication.

Modular form 1638.2.a.l

sage: E.q_eigenform(10)
 
q+q2+q43q5+q7+q83q103q11+q13+q14+q16+3q177q19+O(q20)q + q^{2} + q^{4} - 3 q^{5} + q^{7} + q^{8} - 3 q^{10} - 3 q^{11} + q^{13} + q^{14} + q^{16} + 3 q^{17} - 7 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(139313931)\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.