Properties

Label 1638c4
Conductor 16381638
Discriminant 2.505×1013-2.505\times 10^{13}
j-invariant 16958020781251272491584 \frac{1695802078125}{1272491584}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x2+6708x116848y^2+xy=x^3-x^2+6708x-116848 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z+6708xz2116848z3y^2z+xyz=x^3-x^2z+6708xz^2-116848z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+107325x7370946y^2=x^3+107325x-7370946 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, 6708, -116848])
 
gp: E = ellinit([1, -1, 0, 6708, -116848])
 
magma: E := EllipticCurve([1, -1, 0, 6708, -116848]);
 
oscar: E = elliptic_curve([1, -1, 0, 6708, -116848])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(64,724)(64, 724)0.489244026314899845017358583960.48924402631489984501735858396\infty
(67/4,67/8)(67/4, -67/8)0022

Integral points

(29,304) \left(29, 304\right) , (29,333) \left(29, -333\right) , (64,724) \left(64, 724\right) , (64,788) \left(64, -788\right) , (176,2460) \left(176, 2460\right) , (176,2636) \left(176, -2636\right) , (631,15655) \left(631, 15655\right) , (631,16286) \left(631, -16286\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  1638 1638  = 2327132 \cdot 3^{2} \cdot 7 \cdot 13
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  25046451847872-25046451847872 = 1263976132-1 \cdot 2^{6} \cdot 3^{9} \cdot 7^{6} \cdot 13^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  16958020781251272491584 \frac{1695802078125}{1272491584}  = 263656761325332^{-6} \cdot 3^{6} \cdot 5^{6} \cdot 7^{-6} \cdot 13^{-2} \cdot 53^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.25916710658101484501535785141.2591671065810148450153578514
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.435207890079932576468923923710.43520789007993257646892392371
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.05976036553980161.0597603655398016
Szpiro ratio: σm\sigma_{m} ≈ 5.1405889352790095.140588935279009

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.489244026314899845017358583960.48924402631489984501735858396
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.375585877472847449076285683710.37558587747284744907628568371
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 48 48  = 22(23)2 2\cdot2\cdot( 2 \cdot 3 )\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.20503776306196631532184337722.2050377630619663153218433772
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.205037763L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.3755860.48924448222.205037763\displaystyle 2.205037763 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.375586 \cdot 0.489244 \cdot 48}{2^2} \approx 2.205037763

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1638.2.a.e

qq2+q4+q7q8+q13q14+q166q174q19+O(q20) q - q^{2} + q^{4} + q^{7} - q^{8} + q^{13} - q^{14} + q^{16} - 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 3456
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I6I_{6} nonsplit multiplicative 1 1 6 6
33 22 IIIIII^{*} additive 1 2 9 0
77 66 I6I_{6} split multiplicative -1 1 6 6
1313 22 I2I_{2} split multiplicative -1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1
33 3B.1.2 3.8.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1081, 12, 1080, 13], [1011, 640, 974, 629], [352, 1081, 399, 32], [157, 12, 942, 73], [1, 0, 12, 1], [1, 6, 6, 37], [1, 12, 0, 1], [11, 2, 1042, 1083], [925, 12, 90, 73]]
 
GL(2,Integers(1092)).subgroup(gens)
 
Gens := [[1081, 12, 1080, 13], [1011, 640, 974, 629], [352, 1081, 399, 32], [157, 12, 942, 73], [1, 0, 12, 1], [1, 6, 6, 37], [1, 12, 0, 1], [11, 2, 1042, 1083], [925, 12, 90, 73]];
 
sub<GL(2,Integers(1092))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1092=223713 1092 = 2^{2} \cdot 3 \cdot 7 \cdot 13 , index 9696, genus 11, and generators

(108112108013),(1011640974629),(352108139932),(1571294273),(10121),(16637),(11201),(11210421083),(925129073)\left(\begin{array}{rr} 1081 & 12 \\ 1080 & 13 \end{array}\right),\left(\begin{array}{rr} 1011 & 640 \\ 974 & 629 \end{array}\right),\left(\begin{array}{rr} 352 & 1081 \\ 399 & 32 \end{array}\right),\left(\begin{array}{rr} 157 & 12 \\ 942 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 1042 & 1083 \end{array}\right),\left(\begin{array}{rr} 925 & 12 \\ 90 & 73 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1092])K:=\Q(E[1092]) is a degree-25360957442536095744 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1092Z)\GL_2(\Z/1092\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 3 3
33 additive 22 13 13
77 split multiplicative 88 234=23213 234 = 2 \cdot 3^{2} \cdot 13
1313 split multiplicative 1414 126=2327 126 = 2 \cdot 3^{2} \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 1638c consists of 4 curves linked by isogenies of degrees dividing 6.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(3)\Q(\sqrt{-3}) Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
33 3.1.4563.1 Z/6Z\Z/6\Z not in database
44 4.2.3577392.2 Z/4Z\Z/4\Z not in database
66 6.0.62462907.1 Z/6ZZ/6Z\Z/6\Z \oplus \Z/6\Z not in database
88 8.0.12797733521664.1 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
88 8.0.24726933504.53 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1212 deg 12 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1818 18.0.28565520568296691182246835618046717952.3 Z/2ZZ/18Z\Z/2\Z \oplus \Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit add ss split ss split ord ord ord ss ord ord ss ord ord
λ\lambda-invariant(s) 1 - 1,1 2 1,1 4 1 1 1 1,3 1 1 1,1 1 1
μ\mu-invariant(s) 1 - 0,0 0 0,0 0 0 0 0 0,0 0 0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.