Properties

Label 1638e2
Conductor 16381638
Discriminant 2.508×10152.508\times 10^{15}
j-invariant 85117812748932333440817243136 \frac{8511781274893233}{3440817243136}
CM no
Rank 00
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x238283x1573435y^2+xy=x^3-x^2-38283x-1573435 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z38283xz21573435z3y^2z+xyz=x^3-x^2z-38283xz^2-1573435z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3612531x101312370y^2=x^3-612531x-101312370 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, -38283, -1573435])
 
gp: E = ellinit([1, -1, 0, -38283, -1573435])
 
magma: E := EllipticCurve([1, -1, 0, -38283, -1573435]);
 
oscar: E = elliptic_curve([1, -1, 0, -38283, -1573435])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(170,85)(-170, 85)0022
(214,107)(214, -107)0022

Integral points

(170,85) \left(-170, 85\right) , (214,107) \left(214, -107\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  1638 1638  = 2327132 \cdot 3^{2} \cdot 7 \cdot 13
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  25083557702461442508355770246144 = 21036761342^{10} \cdot 3^{6} \cdot 7^{6} \cdot 13^{4}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  85117812748932333440817243136 \frac{8511781274893233}{3440817243136}  = 21033761346805932^{-10} \cdot 3^{3} \cdot 7^{-6} \cdot 13^{-4} \cdot 68059^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.65273932118696916495144847101.6527393211869691649514484710
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.10343317685291431925382585251.1034331768529143192538258525
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.08472332073901551.0847233207390155
Szpiro ratio: σm\sigma_{m} ≈ 5.8465814426259075.846581442625907

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.353525208709918656834431020200.35352520870991865683443102020
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 32 32  = 22222 2\cdot2^{2}\cdot2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.707050417419837313668862040390.70705041741983731366886204039
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.707050417L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.3535251.00000032420.707050417\displaystyle 0.707050417 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.353525 \cdot 1.000000 \cdot 32}{4^2} \approx 0.707050417

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1638.2.a.c

qq2+q42q5q7q8+2q104q11q13+q14+q16+6q17+O(q20) q - q^{2} + q^{4} - 2 q^{5} - q^{7} - q^{8} + 2 q^{10} - 4 q^{11} - q^{13} + q^{14} + q^{16} + 6 q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 11520
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I10I_{10} nonsplit multiplicative 1 1 10 10
33 44 I0I_0^{*} additive -1 2 6 0
77 22 I6I_{6} nonsplit multiplicative 1 1 6 6
1313 22 I4I_{4} nonsplit multiplicative 1 1 4 4

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 8.12.0.3

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 4, 0, 1], [157, 60, 30, 115], [1, 0, 4, 1], [163, 114, 78, 55], [55, 0, 0, 167], [165, 4, 164, 5], [85, 60, 114, 121]]
 
GL(2,Integers(168)).subgroup(gens)
 
Gens := [[1, 4, 0, 1], [157, 60, 30, 115], [1, 0, 4, 1], [163, 114, 78, 55], [55, 0, 0, 167], [165, 4, 164, 5], [85, 60, 114, 121]];
 
sub<GL(2,Integers(168))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 168=2337 168 = 2^{3} \cdot 3 \cdot 7 , index 4848, genus 00, and generators

(1401),(1576030115),(1041),(1631147855),(5500167),(16541645),(8560114121)\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 157 & 60 \\ 30 & 115 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 163 & 114 \\ 78 & 55 \end{array}\right),\left(\begin{array}{rr} 55 & 0 \\ 0 & 167 \end{array}\right),\left(\begin{array}{rr} 165 & 4 \\ 164 & 5 \end{array}\right),\left(\begin{array}{rr} 85 & 60 \\ 114 & 121 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[168])K:=\Q(E[168]) is a degree-30965763096576 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/168Z)\GL_2(\Z/168\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 9=32 9 = 3^{2}
33 additive 66 26=213 26 = 2 \cdot 13
55 good 22 819=32713 819 = 3^{2} \cdot 7 \cdot 13
77 nonsplit multiplicative 88 234=23213 234 = 2 \cdot 3^{2} \cdot 13
1313 nonsplit multiplicative 1414 126=2327 126 = 2 \cdot 3^{2} \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 1638e consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 182a2, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
44 Q(3,7)\Q(\sqrt{3}, \sqrt{-7}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(6,14)\Q(\sqrt{6}, \sqrt{14}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(2,3)\Q(\sqrt{2}, \sqrt{-3}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.2.999406512.2 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 16.0.162447943996702457856.1 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 7 13
Reduction type nonsplit add nonsplit nonsplit
λ\lambda-invariant(s) 3 - 0 0
μ\mu-invariant(s) 0 - 0 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p3p\ge 3 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.