Properties

Label 1638h1
Conductor 16381638
Discriminant 2.185×1015-2.185\times 10^{15}
j-invariant 402513388845112997011332224 \frac{40251338884511}{2997011332224}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x2+6426x+2238516y^2+xy=x^3-x^2+6426x+2238516 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z+6426xz2+2238516z3y^2z+xyz=x^3-x^2z+6426xz^2+2238516z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+102813x+143367838y^2=x^3+102813x+143367838 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, 6426, 2238516])
 
gp: E = ellinit([1, -1, 0, 6426, 2238516])
 
magma: E := EllipticCurve([1, -1, 0, 6426, 2238516]);
 
oscar: E = elliptic_curve([1, -1, 0, 6426, 2238516])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(315,5796)(315, 5796)0.228946173078986075803365562400.22894617307898607580336556240\infty

Integral points

(35,1421) \left(-35, 1421\right) , (35,1386) \left(-35, -1386\right) , (21,1533) \left(21, 1533\right) , (21,1554) \left(21, -1554\right) , (315,5796) \left(315, 5796\right) , (315,6111) \left(315, -6111\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  1638 1638  = 2327132 \cdot 3^{2} \cdot 7 \cdot 13
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  2184821261191296-2184821261191296 = 1273137713-1 \cdot 2^{7} \cdot 3^{13} \cdot 7^{7} \cdot 13
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  402513388845112997011332224 \frac{40251338884511}{2997011332224}  = 27377713143379732^{-7} \cdot 3^{-7} \cdot 7^{-7} \cdot 13^{-1} \cdot 43^{3} \cdot 797^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.62289874383311461826994011041.6228987438331146182699401104
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.07359259949905977257231749191.0735925994990597725723174919
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.03878296921618051.0387829692161805
Szpiro ratio: σm\sigma_{m} ≈ 5.7783936485021475.778393648502147

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.228946173078986075803365562400.22894617307898607580336556240
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.353419518678165744694665379260.35341951867816574469466537926
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 28 28  = 12271 1\cdot2^{2}\cdot7\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.26559329619793203040675535992.2655932961979320304067553599
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.265593296L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.3534200.22894628122.265593296\displaystyle 2.265593296 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.353420 \cdot 0.228946 \cdot 28}{1^2} \approx 2.265593296

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1638.2.a.h

qq2+q4+q5+q7q8q105q11q13q14+q16+3q17q19+O(q20) q - q^{2} + q^{4} + q^{5} + q^{7} - q^{8} - q^{10} - 5 q^{11} - q^{13} - q^{14} + q^{16} + 3 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 9408
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I7I_{7} nonsplit multiplicative 1 1 7 7
33 44 I7I_{7}^{*} additive -1 2 13 7
77 77 I7I_{7} split multiplicative -1 1 7 7
1313 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
77 7B.6.1 7.24.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[2171, 14, 2170, 15], [1, 14, 0, 1], [727, 2170, 721, 2085], [1093, 14, 1099, 99], [547, 1106, 1645, 801], [1, 0, 14, 1], [8, 5, 91, 57], [1639, 14, 553, 99], [2017, 14, 1015, 99]]
 
GL(2,Integers(2184)).subgroup(gens)
 
Gens := [[2171, 14, 2170, 15], [1, 14, 0, 1], [727, 2170, 721, 2085], [1093, 14, 1099, 99], [547, 1106, 1645, 801], [1, 0, 14, 1], [8, 5, 91, 57], [1639, 14, 553, 99], [2017, 14, 1015, 99]];
 
sub<GL(2,Integers(2184))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2184=233713 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 , index 9696, genus 22, and generators

(217114217015),(11401),(72721707212085),(109314109999),(54711061645801),(10141),(859157),(16391455399),(201714101599)\left(\begin{array}{rr} 2171 & 14 \\ 2170 & 15 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 727 & 2170 \\ 721 & 2085 \end{array}\right),\left(\begin{array}{rr} 1093 & 14 \\ 1099 & 99 \end{array}\right),\left(\begin{array}{rr} 547 & 1106 \\ 1645 & 801 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 1639 & 14 \\ 553 & 99 \end{array}\right),\left(\begin{array}{rr} 2017 & 14 \\ 1015 & 99 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2184])K:=\Q(E[2184]) is a degree-4057753190440577531904 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2184Z)\GL_2(\Z/2184\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 819=32713 819 = 3^{2} \cdot 7 \cdot 13
33 additive 88 182=2713 182 = 2 \cdot 7 \cdot 13
77 split multiplicative 88 117=3213 117 = 3^{2} \cdot 13
1313 nonsplit multiplicative 1414 126=2327 126 = 2 \cdot 3^{2} \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 7.
Its isogeny class 1638h consists of 2 curves linked by isogenies of degree 7.

Twists

The minimal quadratic twist of this elliptic curve is 546f1, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(3)\Q(\sqrt{-3}) Z/7Z\Z/7\Z 2.0.3.1-99372.5-j2
33 3.1.2184.1 Z/2Z\Z/2\Z not in database
66 6.0.10417365504.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.0.14309568.3 Z/14Z\Z/14\Z not in database
88 8.2.194365577860272.4 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/2ZZ/14Z\Z/2\Z \oplus \Z/14\Z not in database
1616 deg 16 Z/21Z\Z/21\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit add ord split ord nonsplit ord ord ord ord ord ord ss ord ord
λ\lambda-invariant(s) 3 - 3 2 1 1 1 1 1 1 1 1 1,1 1 1
μ\mu-invariant(s) 0 - 0 0 0 0 0 0 0 0 0 0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.