E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 164331.a
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
164331.a1 |
164331a3 |
[1,−1,1,−878054,316902498] |
115714886617/1539 |
995717892328011 |
[2] |
1382400 |
2.0213
|
|
164331.a2 |
164331a2 |
[1,−1,1,−56399,4673598] |
30664297/3249 |
2102071106025801 |
[2,2] |
691200 |
1.6747
|
|
164331.a3 |
164331a1 |
[1,−1,1,−13154,−498504] |
389017/57 |
36878440456593 |
[2] |
345600 |
1.3281
|
Γ0(N)-optimal |
164331.a4 |
164331a4 |
[1,−1,1,73336,22940286] |
67419143/390963 |
−252949223091771387 |
[2] |
1382400 |
2.0213
|
|
The elliptic curves in class 164331.a have
rank 1.
The elliptic curves in class 164331.a do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.