Properties

Label 164331.a
Number of curves 44
Conductor 164331164331
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 164331.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
164331.a1 164331a3 [1,1,1,878054,316902498][1, -1, 1, -878054, 316902498] 115714886617/1539115714886617/1539 995717892328011995717892328011 [2][2] 13824001382400 2.02132.0213  
164331.a2 164331a2 [1,1,1,56399,4673598][1, -1, 1, -56399, 4673598] 30664297/324930664297/3249 21020711060258012102071106025801 [2,2][2, 2] 691200691200 1.67471.6747  
164331.a3 164331a1 [1,1,1,13154,498504][1, -1, 1, -13154, -498504] 389017/57389017/57 3687844045659336878440456593 [2][2] 345600345600 1.32811.3281 Γ0(N)\Gamma_0(N)-optimal
164331.a4 164331a4 [1,1,1,73336,22940286][1, -1, 1, 73336, 22940286] 67419143/39096367419143/390963 252949223091771387-252949223091771387 [2][2] 13824001382400 2.02132.0213  

Rank

sage: E.rank()
 

The elliptic curves in class 164331.a have rank 11.

Complex multiplication

The elliptic curves in class 164331.a do not have complex multiplication.

Modular form 164331.2.a.a

sage: E.q_eigenform(10)
 
qq2q4+2q5+3q82q106q13q166q17q19+O(q20)q - q^{2} - q^{4} + 2 q^{5} + 3 q^{8} - 2 q^{10} - 6 q^{13} - q^{16} - 6 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.