Properties

Label 164331a2
Conductor 164331164331
Discriminant 2.102×10152.102\times 10^{15}
j-invariant 306642973249 \frac{30664297}{3249}
CM no
Rank 11
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x256399x+4673598y^2+xy+y=x^3-x^2-56399x+4673598 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z56399xz2+4673598z3y^2z+xyz+yz^2=x^3-x^2z-56399xz^2+4673598z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3902379x+298207910y^2=x^3-902379x+298207910 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 1, -56399, 4673598])
 
gp: E = ellinit([1, -1, 1, -56399, 4673598])
 
magma: E := EllipticCurve([1, -1, 1, -56399, 4673598]);
 
oscar: E = elliptic_curve([1, -1, 1, -56399, 4673598])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(46,2700)(-46, 2700)4.50146758640179827285859119554.5014675864017982728585911955\infty
(271,135)(-271, 135)0022
(101,51)(101, -51)0022

Integral points

(271,135) \left(-271, 135\right) , (46,2700) \left(-46, 2700\right) , (46,2655) \left(-46, -2655\right) , (101,51) \left(101, -51\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  164331 164331  = 32193123^{2} \cdot 19 \cdot 31^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  21020711060258012102071106025801 = 381923163^{8} \cdot 19^{2} \cdot 31^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  306642973249 \frac{30664297}{3249}  = 3219231333^{-2} \cdot 19^{-2} \cdot 313^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.67471749409382922028415635011.6747174940938292202841563501
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.59158225248279874837804843063-0.59158225248279874837804843063
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.90726686079402850.9072668607940285
Szpiro ratio: σm\sigma_{m} ≈ 3.69987893542552153.6998789354255215

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 4.50146758640179827285859119554.5014675864017982728585911955
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.450162412209098069424073597460.45016241220909806942407359746
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 32 32  = 22222 2^{2}\cdot2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.05278301435140018707823555554.0527830143514001870782355555
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.052783014L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.4501624.50146832424.052783014\displaystyle 4.052783014 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.450162 \cdot 4.501468 \cdot 32}{4^2} \approx 4.052783014

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 164331.2.a.a

qq2q4+2q5+3q82q106q13q166q17q19+O(q20) q - q^{2} - q^{4} + 2 q^{5} + 3 q^{8} - 2 q^{10} - 6 q^{13} - q^{16} - 6 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 691200
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 44 I2I_{2}^{*} additive -1 2 8 2
1919 22 I2I_{2} nonsplit multiplicative 1 1 2 2
3131 44 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 2.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 4, 1], [63, 6386, 2542, 683], [1, 4, 0, 1], [4711, 682, 0, 7067], [6383, 0, 0, 7067], [2853, 5704, 6386, 6387], [7065, 4, 7064, 5]]
 
GL(2,Integers(7068)).subgroup(gens)
 
Gens := [[1, 0, 4, 1], [63, 6386, 2542, 683], [1, 4, 0, 1], [4711, 682, 0, 7067], [6383, 0, 0, 7067], [2853, 5704, 6386, 6387], [7065, 4, 7064, 5]];
 
sub<GL(2,Integers(7068))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 7068=2231931 7068 = 2^{2} \cdot 3 \cdot 19 \cdot 31 , index 4848, genus 00, and generators

(1041),(6363862542683),(1401),(471168207067),(6383007067),(2853570463866387),(7065470645)\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 63 & 6386 \\ 2542 & 683 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4711 & 682 \\ 0 & 7067 \end{array}\right),\left(\begin{array}{rr} 6383 & 0 \\ 0 & 7067 \end{array}\right),\left(\begin{array}{rr} 2853 & 5704 \\ 6386 & 6387 \end{array}\right),\left(\begin{array}{rr} 7065 & 4 \\ 7064 & 5 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[7068])K:=\Q(E[7068]) is a degree-1055246745600010552467456000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/7068Z)\GL_2(\Z/7068\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 8649=32312 8649 = 3^{2} \cdot 31^{2}
33 additive 88 18259=19312 18259 = 19 \cdot 31^{2}
1919 nonsplit multiplicative 2020 8649=32312 8649 = 3^{2} \cdot 31^{2}
3131 additive 482482 171=3219 171 = 3^{2} \cdot 19

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 164331a consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 57b1, its twist by 9393.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
44 Q(3,31)\Q(\sqrt{-3}, \sqrt{-31}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(31,57)\Q(\sqrt{31}, \sqrt{57}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(19,93)\Q(\sqrt{19}, \sqrt{-93}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.