Properties

Label 164331b3
Conductor 164331164331
Discriminant 1.229×1013-1.229\times 10^{13}
j-invariant 5035787105075219 -\frac{50357871050752}{19}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x36653964x6606459608y^2+y=x^3-6653964x-6606459608 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x36653964xz26606459608z3y^2z+yz^2=x^3-6653964xz^2-6606459608z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3106463424x422813414896y^2=x^3-106463424x-422813414896 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 1, -6653964, -6606459608])
 
gp: E = ellinit([0, 0, 1, -6653964, -6606459608])
 
magma: E := EllipticCurve([0, 0, 1, -6653964, -6606459608]);
 
oscar: E = elliptic_curve([0, 0, 1, -6653964, -6606459608])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  164331 164331  = 32193123^{2} \cdot 19 \cdot 31^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  12292813485531-12292813485531 = 13619316-1 \cdot 3^{6} \cdot 19 \cdot 31^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  5035787105075219 -\frac{50357871050752}{19}  = 12181915773-1 \cdot 2^{18} \cdot 19^{-1} \cdot 577^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.29973890356794577218229966432.2997389035679457721822996643
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.0334391569913178035200948835680.033439156991317803520094883568
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.1049470994824951.104947099482495
Szpiro ratio: σm\sigma_{m} ≈ 4.8915523663632234.891552366363223

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0470001720022298430877275281250.047000172002229843087727528125
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 212 2\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.69200619208027435115819101251.6920061920802743511581910125
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  99 = 323^2    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.692006192L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor290.0470001.0000004121.692006192\displaystyle 1.692006192 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{9 \cdot 0.047000 \cdot 1.000000 \cdot 4}{1^2} \approx 1.692006192

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 164331.2.a.b

q2q43q5q7+3q11+4q13+4q163q17+q19+O(q20) q - 2 q^{4} - 3 q^{5} - q^{7} + 3 q^{11} + 4 q^{13} + 4 q^{16} - 3 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2177280
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 I0I_0^{*} additive -1 2 6 0
1919 11 I1I_{1} split multiplicative -1 1 1 1
3131 22 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B 27.36.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[20519, 0, 0, 31805], [8278, 16461, 6541, 30226], [31753, 54, 31752, 55], [1, 54, 0, 1], [1115, 25575, 22971, 20428], [28, 27, 729, 703], [31, 36, 25984, 25045], [1, 0, 54, 1]]
 
GL(2,Integers(31806)).subgroup(gens)
 
Gens := [[20519, 0, 0, 31805], [8278, 16461, 6541, 30226], [31753, 54, 31752, 55], [1, 54, 0, 1], [1115, 25575, 22971, 20428], [28, 27, 729, 703], [31, 36, 25984, 25045], [1, 0, 54, 1]];
 
sub<GL(2,Integers(31806))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 31806=2331931 31806 = 2 \cdot 3^{3} \cdot 19 \cdot 31 , index 12961296, genus 4343, and generators

(205190031805),(827816461654130226),(31753543175255),(15401),(1115255752297120428),(2827729703),(31362598425045),(10541)\left(\begin{array}{rr} 20519 & 0 \\ 0 & 31805 \end{array}\right),\left(\begin{array}{rr} 8278 & 16461 \\ 6541 & 30226 \end{array}\right),\left(\begin{array}{rr} 31753 & 54 \\ 31752 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1115 & 25575 \\ 22971 & 20428 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right),\left(\begin{array}{rr} 31 & 36 \\ 25984 & 25045 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[31806])K:=\Q(E[31806]) is a degree-160265599488000160265599488000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/31806Z)\GL_2(\Z/31806\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
33 additive 22 18259=19312 18259 = 19 \cdot 31^{2}
1919 split multiplicative 2020 8649=32312 8649 = 3^{2} \cdot 31^{2}
3131 additive 482482 171=3219 171 = 3^{2} \cdot 19

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3 and 9.
Its isogeny class 164331b consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 19a2, its twist by 9393.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(31)\Q(\sqrt{-31}) Z/3Z\Z/3\Z not in database
33 3.1.76.1 Z/2Z\Z/2\Z not in database
66 6.0.109744.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.104824608597.1 Z/3Z\Z/3\Z not in database
66 6.0.25472379889071.4 Z/9Z\Z/9\Z not in database
66 6.0.172072816.2 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1212 12.0.44809196023038025892889.1 Z/9Z\Z/9\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.2.1703165684380928812681845278719895359488.1 Z/6Z\Z/6\Z not in database
1818 18.0.24438566010773300106792218492740857563024879616.1 Z/18Z\Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.