Properties

Label 165048c
Number of curves $4$
Conductor $165048$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 165048c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
165048.bb3 165048c1 \([0, 1, 0, -3879, -54918]\) \(2725888/1053\) \(2494108657872\) \([2]\) \(202752\) \(1.0777\) \(\Gamma_0(N)\)-optimal
165048.bb2 165048c2 \([0, 1, 0, -27684, 1725696]\) \(61918288/1521\) \(57641622315264\) \([2, 2]\) \(405504\) \(1.4243\)  
165048.bb1 165048c3 \([0, 1, 0, -440304, 112307856]\) \(62275269892/39\) \(5911961263104\) \([2]\) \(811008\) \(1.7709\)  
165048.bb4 165048c4 \([0, 1, 0, 4056, 5483712]\) \(48668/85683\) \(-12988578895039488\) \([2]\) \(811008\) \(1.7709\)  

Rank

sage: E.rank()
 

The elliptic curves in class 165048c have rank \(1\).

Complex multiplication

The elliptic curves in class 165048c do not have complex multiplication.

Modular form 165048.2.a.c

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} + q^{13} - 2 q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.