sage:E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 165048c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
165048.bb3 |
165048c1 |
[0,1,0,−3879,−54918] |
2725888/1053 |
2494108657872 |
[2] |
202752 |
1.0777
|
Γ0(N)-optimal |
165048.bb2 |
165048c2 |
[0,1,0,−27684,1725696] |
61918288/1521 |
57641622315264 |
[2,2] |
405504 |
1.4243
|
|
165048.bb1 |
165048c3 |
[0,1,0,−440304,112307856] |
62275269892/39 |
5911961263104 |
[2] |
811008 |
1.7709
|
|
165048.bb4 |
165048c4 |
[0,1,0,4056,5483712] |
48668/85683 |
−12988578895039488 |
[2] |
811008 |
1.7709
|
|
sage:E.rank()
The elliptic curves in class 165048c have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
13 | 1−T |
23 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+4T+5T2 |
1.5.e
|
7 |
1−2T+7T2 |
1.7.ac
|
11 |
1−2T+11T2 |
1.11.ac
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1+T+19T2 |
1.19.b
|
29 |
1−2T+29T2 |
1.29.ac
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 165048c do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.