sage:E = EllipticCurve("bm1")
E.isogeny_class()
Elliptic curves in class 16562bm
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
16562.bd3 |
16562bm1 |
[1,1,1,3968,−156213] |
12167/26 |
−14764600553066 |
[] |
42336 |
1.2112
|
Γ0(N)-optimal |
16562.bd2 |
16562bm2 |
[1,1,1,−37437,5541115] |
−10218313/17576 |
−9980869973872616 |
[] |
127008 |
1.7605
|
|
16562.bd1 |
16562bm3 |
[1,1,1,−3805292,2855546637] |
−10730978619193/6656 |
−3779737741584896 |
[] |
381024 |
2.3098
|
|
sage:E.rank()
The elliptic curves in class 16562bm have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1−T |
7 | 1 |
13 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+3T2 |
1.3.a
|
5 |
1−T+5T2 |
1.5.ab
|
11 |
1−4T+11T2 |
1.11.ae
|
17 |
1+3T+17T2 |
1.17.d
|
19 |
1+19T2 |
1.19.a
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1+T+29T2 |
1.29.b
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 16562bm do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎛139313931⎠⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.