Show commands:
SageMath
E = EllipticCurve("bm1")
E.isogeny_class()
Elliptic curves in class 16562bm
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
16562.bd3 | 16562bm1 | \([1, 1, 1, 3968, -156213]\) | \(12167/26\) | \(-14764600553066\) | \([]\) | \(42336\) | \(1.2112\) | \(\Gamma_0(N)\)-optimal |
16562.bd2 | 16562bm2 | \([1, 1, 1, -37437, 5541115]\) | \(-10218313/17576\) | \(-9980869973872616\) | \([]\) | \(127008\) | \(1.7605\) | |
16562.bd1 | 16562bm3 | \([1, 1, 1, -3805292, 2855546637]\) | \(-10730978619193/6656\) | \(-3779737741584896\) | \([]\) | \(381024\) | \(2.3098\) |
Rank
sage: E.rank()
The elliptic curves in class 16562bm have rank \(1\).
Complex multiplication
The elliptic curves in class 16562bm do not have complex multiplication.Modular form 16562.2.a.bm
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.