Properties

Label 168.a
Number of curves 44
Conductor 168168
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 168.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
168.a1 168b4 [0,1,0,4032,99900][0, -1, 0, -4032, 99900] 7080974546692/1897080974546692/189 193536193536 [2][2] 9696 0.528190.52819  
168.a2 168b3 [0,1,0,392,228][0, -1, 0, -392, -228] 6522128932/37200876522128932/3720087 38093690883809369088 [2][2] 9696 0.528190.52819  
168.a3 168b2 [0,1,0,252,1620][0, -1, 0, -252, 1620] 6940769488/357216940769488/35721 91445769144576 [2,2][2, 2] 4848 0.181620.18162  
168.a4 168b1 [0,1,0,7,52][0, -1, 0, -7, 52] 2725888/64827-2725888/64827 1037232-1037232 [4][4] 2424 0.16496-0.16496 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 168.a have rank 00.

Complex multiplication

The elliptic curves in class 168.a do not have complex multiplication.

Modular form 168.2.a.a

sage: E.q_eigenform(10)
 
qq3+2q5+q7+q9+6q132q152q17+4q19+O(q20)q - q^{3} + 2 q^{5} + q^{7} + q^{9} + 6 q^{13} - 2 q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.