sage:E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 168.a
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
168.a1 |
168b4 |
[0,−1,0,−4032,99900] |
7080974546692/189 |
193536 |
[2] |
96 |
0.52819
|
|
168.a2 |
168b3 |
[0,−1,0,−392,−228] |
6522128932/3720087 |
3809369088 |
[2] |
96 |
0.52819
|
|
168.a3 |
168b2 |
[0,−1,0,−252,1620] |
6940769488/35721 |
9144576 |
[2,2] |
48 |
0.18162
|
|
168.a4 |
168b1 |
[0,−1,0,−7,52] |
−2725888/64827 |
−1037232 |
[4] |
24 |
−0.16496
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 168.a have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
7 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1−2T+5T2 |
1.5.ac
|
11 |
1+11T2 |
1.11.a
|
13 |
1−6T+13T2 |
1.13.ag
|
17 |
1+2T+17T2 |
1.17.c
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1+10T+29T2 |
1.29.k
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 168.a do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.