Properties

Label 1682.f
Number of curves $1$
Conductor $1682$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 1682.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1682.f1 1682h1 \([1, -1, 1, 221025, 19814919]\) \(2838375/2048\) \(-861608413798811648\) \([]\) \(47850\) \(2.1298\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1682.f1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1682.f do not have complex multiplication.

Modular form 1682.2.a.f

sage: E.q_eigenform(10)
 
\(q + q^{2} - 3 q^{3} + q^{4} - 3 q^{6} + 4 q^{7} + q^{8} + 6 q^{9} + q^{11} - 3 q^{12} + 6 q^{13} + 4 q^{14} + q^{16} - 2 q^{17} + 6 q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display