sage:E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 1682.i
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
1682.i1 |
1682f2 |
[1,1,1,−148,−755] |
426477625/8 |
6728 |
[] |
300 |
−0.14116
|
|
1682.i2 |
1682f1 |
[1,1,1,−3,−1] |
3625/2 |
1682 |
[] |
100 |
−0.69047
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 1682.i have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1−T |
29 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1−2T+3T2 |
1.3.ac
|
5 |
1+5T2 |
1.5.a
|
7 |
1+T+7T2 |
1.7.b
|
11 |
1−6T+11T2 |
1.11.ag
|
13 |
1+4T+13T2 |
1.13.e
|
17 |
1−3T+17T2 |
1.17.ad
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1−9T+23T2 |
1.23.aj
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 1682.i do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1331)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.