Properties

Label 1682.i
Number of curves $2$
Conductor $1682$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 1682.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1682.i1 1682f2 \([1, 1, 1, -148, -755]\) \(426477625/8\) \(6728\) \([]\) \(300\) \(-0.14116\)  
1682.i2 1682f1 \([1, 1, 1, -3, -1]\) \(3625/2\) \(1682\) \([]\) \(100\) \(-0.69047\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1682.i have rank \(0\).

Complex multiplication

The elliptic curves in class 1682.i do not have complex multiplication.

Modular form 1682.2.a.i

sage: E.q_eigenform(10)
 
\(q + q^{2} + 2 q^{3} + q^{4} + 2 q^{6} - q^{7} + q^{8} + q^{9} + 6 q^{11} + 2 q^{12} - 4 q^{13} - q^{14} + q^{16} + 3 q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.