Show commands:
SageMath
E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 1682.i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1682.i1 | 1682f2 | \([1, 1, 1, -148, -755]\) | \(426477625/8\) | \(6728\) | \([]\) | \(300\) | \(-0.14116\) | |
1682.i2 | 1682f1 | \([1, 1, 1, -3, -1]\) | \(3625/2\) | \(1682\) | \([]\) | \(100\) | \(-0.69047\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1682.i have rank \(0\).
Complex multiplication
The elliptic curves in class 1682.i do not have complex multiplication.Modular form 1682.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.