Properties

Label 1682.i
Number of curves 22
Conductor 16821682
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Elliptic curves in class 1682.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1682.i1 1682f2 [1,1,1,148,755][1, 1, 1, -148, -755] 426477625/8426477625/8 67286728 [][] 300300 0.14116-0.14116  
1682.i2 1682f1 [1,1,1,3,1][1, 1, 1, -3, -1] 3625/23625/2 16821682 [][] 100100 0.69047-0.69047 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1682.i have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221T1 - T
292911
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 12T+3T2 1 - 2 T + 3 T^{2} 1.3.ac
55 1+5T2 1 + 5 T^{2} 1.5.a
77 1+T+7T2 1 + T + 7 T^{2} 1.7.b
1111 16T+11T2 1 - 6 T + 11 T^{2} 1.11.ag
1313 1+4T+13T2 1 + 4 T + 13 T^{2} 1.13.e
1717 13T+17T2 1 - 3 T + 17 T^{2} 1.17.ad
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 19T+23T2 1 - 9 T + 23 T^{2} 1.23.aj
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1682.i do not have complex multiplication.

Modular form 1682.2.a.i

Copy content sage:E.q_eigenform(10)
 
q+q2+2q3+q4+2q6q7+q8+q9+6q11+2q124q13q14+q16+3q17+q18+4q19+O(q20)q + q^{2} + 2 q^{3} + q^{4} + 2 q^{6} - q^{7} + q^{8} + q^{9} + 6 q^{11} + 2 q^{12} - 4 q^{13} - q^{14} + q^{16} + 3 q^{17} + q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.