Properties

Label 1694.e
Number of curves $6$
Conductor $1694$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 1694.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1694.e1 1694f6 \([1, 0, 0, -330393, 73068601]\) \(2251439055699625/25088\) \(44444922368\) \([2]\) \(8640\) \(1.6120\)  
1694.e2 1694f5 \([1, 0, 0, -20633, 1142329]\) \(-548347731625/1835008\) \(-3250828607488\) \([2]\) \(4320\) \(1.2655\)  
1694.e3 1694f4 \([1, 0, 0, -4298, 88540]\) \(4956477625/941192\) \(1667379040712\) \([2]\) \(2880\) \(1.0627\)  
1694.e4 1694f2 \([1, 0, 0, -1273, -17577]\) \(128787625/98\) \(173612978\) \([2]\) \(960\) \(0.51344\)  
1694.e5 1694f1 \([1, 0, 0, -63, -395]\) \(-15625/28\) \(-49603708\) \([2]\) \(480\) \(0.16686\) \(\Gamma_0(N)\)-optimal
1694.e6 1694f3 \([1, 0, 0, 542, 8196]\) \(9938375/21952\) \(-38889307072\) \([2]\) \(1440\) \(0.71617\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1694.e have rank \(1\).

Complex multiplication

The elliptic curves in class 1694.e do not have complex multiplication.

Modular form 1694.2.a.e

sage: E.q_eigenform(10)
 
\(q + q^{2} - 2 q^{3} + q^{4} - 2 q^{6} - q^{7} + q^{8} + q^{9} - 2 q^{12} + 4 q^{13} - q^{14} + q^{16} - 6 q^{17} + q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 3 & 9 & 18 & 6 \\ 2 & 1 & 6 & 18 & 9 & 3 \\ 3 & 6 & 1 & 3 & 6 & 2 \\ 9 & 18 & 3 & 1 & 2 & 6 \\ 18 & 9 & 6 & 2 & 1 & 3 \\ 6 & 3 & 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.