Properties

Label 1710.c
Number of curves 22
Conductor 17101710
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 1710.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1710.c1 1710f2 [1,1,0,270,1750][1, -1, 0, -270, 1750] 2992209121/541502992209121/54150 3947535039475350 [2][2] 768768 0.252880.25288  
1710.c2 1710f1 [1,1,0,0,76][1, -1, 0, 0, 76] 1/3420-1/3420 2493180-2493180 [2][2] 384384 0.093694-0.093694 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1710.c have rank 11.

Complex multiplication

The elliptic curves in class 1710.c do not have complex multiplication.

Modular form 1710.2.a.c

sage: E.q_eigenform(10)
 
qq2+q4q52q7q8+q10+6q13+2q14+q168q17+q19+O(q20)q - q^{2} + q^{4} - q^{5} - 2 q^{7} - q^{8} + q^{10} + 6 q^{13} + 2 q^{14} + q^{16} - 8 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.