Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 1710.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1710.c1 | 1710f2 | \([1, -1, 0, -270, 1750]\) | \(2992209121/54150\) | \(39475350\) | \([2]\) | \(768\) | \(0.25288\) | |
1710.c2 | 1710f1 | \([1, -1, 0, 0, 76]\) | \(-1/3420\) | \(-2493180\) | \([2]\) | \(384\) | \(-0.093694\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1710.c have rank \(1\).
Complex multiplication
The elliptic curves in class 1710.c do not have complex multiplication.Modular form 1710.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.