Properties

Label 1710.c
Number of curves $2$
Conductor $1710$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 1710.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1710.c1 1710f2 \([1, -1, 0, -270, 1750]\) \(2992209121/54150\) \(39475350\) \([2]\) \(768\) \(0.25288\)  
1710.c2 1710f1 \([1, -1, 0, 0, 76]\) \(-1/3420\) \(-2493180\) \([2]\) \(384\) \(-0.093694\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1710.c have rank \(1\).

Complex multiplication

The elliptic curves in class 1710.c do not have complex multiplication.

Modular form 1710.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - 2 q^{7} - q^{8} + q^{10} + 6 q^{13} + 2 q^{14} + q^{16} - 8 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.