E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 1710.f
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
1710.f1 |
1710d3 |
[1,−1,0,−27360,−1735074] |
3107086841064961/570 |
415530 |
[2] |
3072 |
0.91382
|
|
1710.f2 |
1710d4 |
[1,−1,0,−1980,−17550] |
1177918188481/488703750 |
356265033750 |
[2] |
3072 |
0.91382
|
|
1710.f3 |
1710d2 |
[1,−1,0,−1710,−26784] |
758800078561/324900 |
236852100 |
[2,2] |
1536 |
0.56725
|
|
1710.f4 |
1710d1 |
[1,−1,0,−90,−540] |
−111284641/123120 |
−89754480 |
[2] |
768 |
0.22067
|
Γ0(N)-optimal |
The elliptic curves in class 1710.f have
rank 0.
The elliptic curves in class 1710.f do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.