Properties

Label 1710.f
Number of curves 44
Conductor 17101710
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 1710.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1710.f1 1710d3 [1,1,0,27360,1735074][1, -1, 0, -27360, -1735074] 3107086841064961/5703107086841064961/570 415530415530 [2][2] 30723072 0.913820.91382  
1710.f2 1710d4 [1,1,0,1980,17550][1, -1, 0, -1980, -17550] 1177918188481/4887037501177918188481/488703750 356265033750356265033750 [2][2] 30723072 0.913820.91382  
1710.f3 1710d2 [1,1,0,1710,26784][1, -1, 0, -1710, -26784] 758800078561/324900758800078561/324900 236852100236852100 [2,2][2, 2] 15361536 0.567250.56725  
1710.f4 1710d1 [1,1,0,90,540][1, -1, 0, -90, -540] 111284641/123120-111284641/123120 89754480-89754480 [2][2] 768768 0.220670.22067 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1710.f have rank 00.

Complex multiplication

The elliptic curves in class 1710.f do not have complex multiplication.

Modular form 1710.2.a.f

sage: E.q_eigenform(10)
 
qq2+q4q5+4q7q8+q10+4q112q134q14+q16+2q17q19+O(q20)q - q^{2} + q^{4} - q^{5} + 4 q^{7} - q^{8} + q^{10} + 4 q^{11} - 2 q^{13} - 4 q^{14} + q^{16} + 2 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.