Properties

Label 1710.f
Number of curves $4$
Conductor $1710$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 1710.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1710.f1 1710d3 \([1, -1, 0, -27360, -1735074]\) \(3107086841064961/570\) \(415530\) \([2]\) \(3072\) \(0.91382\)  
1710.f2 1710d4 \([1, -1, 0, -1980, -17550]\) \(1177918188481/488703750\) \(356265033750\) \([2]\) \(3072\) \(0.91382\)  
1710.f3 1710d2 \([1, -1, 0, -1710, -26784]\) \(758800078561/324900\) \(236852100\) \([2, 2]\) \(1536\) \(0.56725\)  
1710.f4 1710d1 \([1, -1, 0, -90, -540]\) \(-111284641/123120\) \(-89754480\) \([2]\) \(768\) \(0.22067\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1710.f have rank \(0\).

Complex multiplication

The elliptic curves in class 1710.f do not have complex multiplication.

Modular form 1710.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} + 4 q^{7} - q^{8} + q^{10} + 4 q^{11} - 2 q^{13} - 4 q^{14} + q^{16} + 2 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.