Properties

Label 1710.o
Number of curves 44
Conductor 17101710
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 1710.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1710.o1 1710o4 [1,1,1,67298,6505697][1, -1, 1, -67298, 6505697] 46237740924063961/180656183040046237740924063961/1806561830400 13169835743616001316983574361600 [6][6] 69126912 1.66841.6684  
1710.o2 1710o2 [1,1,1,9923,375253][1, -1, 1, -9923, -375253] 148212258825961/1218375000148212258825961/1218375000 888195375000888195375000 [2][2] 23042304 1.11911.1191  
1710.o3 1710o1 [1,1,1,203,13669][1, -1, 1, -203, -13669] 1263214441/110808000-1263214441/110808000 80779032000-80779032000 [2][2] 11521152 0.772530.77253 Γ0(N)\Gamma_0(N)-optimal
1710.o4 1710o3 [1,1,1,1822,367841][1, -1, 1, 1822, 367841] 918046641959/80912056320918046641959/80912056320 58984889057280-58984889057280 [6][6] 34563456 1.32181.3218  

Rank

sage: E.rank()
 

The elliptic curves in class 1710.o have rank 00.

Complex multiplication

The elliptic curves in class 1710.o do not have complex multiplication.

Modular form 1710.2.a.o

sage: E.q_eigenform(10)
 
q+q2+q4q5+2q7+q8q10+2q13+2q14+q16+q19+O(q20)q + q^{2} + q^{4} - q^{5} + 2 q^{7} + q^{8} - q^{10} + 2 q^{13} + 2 q^{14} + q^{16} + q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1362312662132631)\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.