E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 1710.o
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
1710.o1 |
1710o4 |
[1,−1,1,−67298,6505697] |
46237740924063961/1806561830400 |
1316983574361600 |
[6] |
6912 |
1.6684
|
|
1710.o2 |
1710o2 |
[1,−1,1,−9923,−375253] |
148212258825961/1218375000 |
888195375000 |
[2] |
2304 |
1.1191
|
|
1710.o3 |
1710o1 |
[1,−1,1,−203,−13669] |
−1263214441/110808000 |
−80779032000 |
[2] |
1152 |
0.77253
|
Γ0(N)-optimal |
1710.o4 |
1710o3 |
[1,−1,1,1822,367841] |
918046641959/80912056320 |
−58984889057280 |
[6] |
3456 |
1.3218
|
|
The elliptic curves in class 1710.o have
rank 0.
The elliptic curves in class 1710.o do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1362312662132631⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.