sage: E = EllipticCurve([1, -1, 0, 0, 76])
gp: E = ellinit([1, -1, 0, 0, 76])
magma: E := EllipticCurve([1, -1, 0, 0, 76]);
oscar: E = elliptic_curve([1, -1, 0, 0, 76])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 2 , 8 ) (2, 8) ( 2 , 8 ) 0.49122122557614811117058036979 0.49122122557614811117058036979 0 . 4 9 1 2 2 1 2 2 5 5 7 6 1 4 8 1 1 1 1 7 0 5 8 0 3 6 9 7 9 ∞ \infty ∞
( − 4 , 2 ) (-4, 2) ( − 4 , 2 ) 0 0 0 2 2 2
( − 4 , 2 ) \left(-4, 2\right) ( − 4 , 2 ) , ( − 3 , 8 ) \left(-3, 8\right) ( − 3 , 8 ) , ( − 3 , − 5 ) \left(-3, -5\right) ( − 3 , − 5 ) , ( 2 , 8 ) \left(2, 8\right) ( 2 , 8 ) , ( 2 , − 10 ) \left(2, -10\right) ( 2 , − 1 0 ) , ( 5 , 11 ) \left(5, 11\right) ( 5 , 1 1 ) , ( 5 , − 16 ) \left(5, -16\right) ( 5 , − 1 6 ) , ( 50 , 326 ) \left(50, 326\right) ( 5 0 , 3 2 6 ) , ( 50 , − 376 ) \left(50, -376\right) ( 5 0 , − 3 7 6 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
1710 1710 1 7 1 0 = 2 ⋅ 3 2 ⋅ 5 ⋅ 19 2 \cdot 3^{2} \cdot 5 \cdot 19 2 ⋅ 3 2 ⋅ 5 ⋅ 1 9
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
− 2493180 -2493180 − 2 4 9 3 1 8 0 = − 1 ⋅ 2 2 ⋅ 3 8 ⋅ 5 ⋅ 19 -1 \cdot 2^{2} \cdot 3^{8} \cdot 5 \cdot 19 − 1 ⋅ 2 2 ⋅ 3 8 ⋅ 5 ⋅ 1 9
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
− 1 3420 -\frac{1}{3420} − 3 4 2 0 1 = − 1 ⋅ 2 − 2 ⋅ 3 − 2 ⋅ 5 − 1 ⋅ 1 9 − 1 -1 \cdot 2^{-2} \cdot 3^{-2} \cdot 5^{-1} \cdot 19^{-1} − 1 ⋅ 2 − 2 ⋅ 3 − 2 ⋅ 5 − 1 ⋅ 1 9 − 1
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ − 0.093694389129020231152863024673 -0.093694389129020231152863024673 − 0 . 0 9 3 6 9 4 3 8 9 1 2 9 0 2 0 2 3 1 1 5 2 8 6 3 0 2 4 6 7 3
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.64300053346307507685048564313 -0.64300053346307507685048564313 − 0 . 6 4 3 0 0 0 5 3 3 4 6 3 0 7 5 0 7 6 8 5 0 4 8 5 6 4 3 1 3
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.1025634962200366 1.1025634962200366 1 . 1 0 2 5 6 3 4 9 6 2 2 0 0 3 6 6
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 2.979990422826717 2.979990422826717 2 . 9 7 9 9 9 0 4 2 2 8 2 6 7 1 7
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.49122122557614811117058036979 0.49122122557614811117058036979 0 . 4 9 1 2 2 1 2 2 5 5 7 6 1 4 8 1 1 1 1 7 0 5 8 0 3 6 9 7 9
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 2.0462166023706620016982237702 2.0462166023706620016982237702 2 . 0 4 6 2 1 6 6 0 2 3 7 0 6 6 2 0 0 1 6 9 8 2 2 3 7 7 0 2
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 8 8 8
= 2 ⋅ 2 2 ⋅ 1 ⋅ 1 2\cdot2^{2}\cdot1\cdot1 2 ⋅ 2 2 ⋅ 1 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 2.0102900544215566460737859590 2.0102900544215566460737859590 2 . 0 1 0 2 9 0 0 5 4 4 2 1 5 5 6 6 4 6 0 7 3 7 8 5 9 5 9 0
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
2.010290054 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 2.046217 ⋅ 0.491221 ⋅ 8 2 2 ≈ 2.010290054 \begin{aligned} 2.010290054 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 2.046217 \cdot 0.491221 \cdot 8}{2^2} \\ & \approx 2.010290054\end{aligned} 2 . 0 1 0 2 9 0 0 5 4 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 2 . 0 4 6 2 1 7 ⋅ 0 . 4 9 1 2 2 1 ⋅ 8 ≈ 2 . 0 1 0 2 9 0 0 5 4
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, -1, 0, 0, 76]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, -1, 0, 0, 76]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
1710.2.a.c
q − q 2 + q 4 − q 5 − 2 q 7 − q 8 + q 10 + 6 q 13 + 2 q 14 + q 16 − 8 q 17 + q 19 + O ( q 20 ) q - q^{2} + q^{4} - q^{5} - 2 q^{7} - q^{8} + q^{10} + 6 q^{13} + 2 q^{14} + q^{16} - 8 q^{17} + q^{19} + O(q^{20}) q − q 2 + q 4 − q 5 − 2 q 7 − q 8 + q 1 0 + 6 q 1 3 + 2 q 1 4 + q 1 6 − 8 q 1 7 + q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[914, 1, 1823, 0], [1, 2, 2, 5], [761, 4, 1522, 9], [289, 1996, 1424, 855], [1562, 1, 359, 0], [1, 4, 0, 1], [2277, 4, 2276, 5], [1141, 4, 2, 9], [1, 0, 4, 1], [3, 4, 8, 11]]
GL(2,Integers(2280)).subgroup(gens)
magma: Gens := [[914, 1, 1823, 0], [1, 2, 2, 5], [761, 4, 1522, 9], [289, 1996, 1424, 855], [1562, 1, 359, 0], [1, 4, 0, 1], [2277, 4, 2276, 5], [1141, 4, 2, 9], [1, 0, 4, 1], [3, 4, 8, 11]];
sub<GL(2,Integers(2280))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 2280 = 2 3 ⋅ 3 ⋅ 5 ⋅ 19 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 2 2 8 0 = 2 3 ⋅ 3 ⋅ 5 ⋅ 1 9 , index 12 12 1 2 , genus 0 0 0 , and generators
( 914 1 1823 0 ) , ( 1 2 2 5 ) , ( 761 4 1522 9 ) , ( 289 1996 1424 855 ) , ( 1562 1 359 0 ) , ( 1 4 0 1 ) , ( 2277 4 2276 5 ) , ( 1141 4 2 9 ) , ( 1 0 4 1 ) , ( 3 4 8 11 ) \left(\begin{array}{rr}
914 & 1 \\
1823 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & 2 \\
2 & 5
\end{array}\right),\left(\begin{array}{rr}
761 & 4 \\
1522 & 9
\end{array}\right),\left(\begin{array}{rr}
289 & 1996 \\
1424 & 855
\end{array}\right),\left(\begin{array}{rr}
1562 & 1 \\
359 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
2277 & 4 \\
2276 & 5
\end{array}\right),\left(\begin{array}{rr}
1141 & 4 \\
2 & 9
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
4 & 1
\end{array}\right),\left(\begin{array}{rr}
3 & 4 \\
8 & 11
\end{array}\right) ( 9 1 4 1 8 2 3 1 0 ) , ( 1 2 2 5 ) , ( 7 6 1 1 5 2 2 4 9 ) , ( 2 8 9 1 4 2 4 1 9 9 6 8 5 5 ) , ( 1 5 6 2 3 5 9 1 0 ) , ( 1 0 4 1 ) , ( 2 2 7 7 2 2 7 6 4 5 ) , ( 1 1 4 1 2 4 9 ) , ( 1 4 0 1 ) , ( 3 8 4 1 1 ) .
The torsion field K : = Q ( E [ 2280 ] ) K:=\Q(E[2280]) K : = Q ( E [ 2 2 8 0 ] ) is a degree-363095654400 363095654400 3 6 3 0 9 5 6 5 4 4 0 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 2280 Z ) \GL_2(\Z/2280\Z) GL 2 ( Z / 2 2 8 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
nonsplit multiplicative
4 4 4
855 = 3 2 ⋅ 5 ⋅ 19 855 = 3^{2} \cdot 5 \cdot 19 8 5 5 = 3 2 ⋅ 5 ⋅ 1 9
3 3 3
additive
8 8 8
190 = 2 ⋅ 5 ⋅ 19 190 = 2 \cdot 5 \cdot 19 1 9 0 = 2 ⋅ 5 ⋅ 1 9
5 5 5
nonsplit multiplicative
6 6 6
342 = 2 ⋅ 3 2 ⋅ 19 342 = 2 \cdot 3^{2} \cdot 19 3 4 2 = 2 ⋅ 3 2 ⋅ 1 9
19 19 1 9
split multiplicative
20 20 2 0
90 = 2 ⋅ 3 2 ⋅ 5 90 = 2 \cdot 3^{2} \cdot 5 9 0 = 2 ⋅ 3 2 ⋅ 5
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 1710f
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
570h1 , its twist by − 3 -3 − 3 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( − 95 ) \Q(\sqrt{-95}) Q ( − 9 5 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.2.54720.2
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.0.27023362560000.4
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.2.230859741870000.3
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
11
13
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97