Properties

Label 1710f1
Conductor 17101710
Discriminant 2493180-2493180
j-invariant 13420 -\frac{1}{3420}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x2+76y^2+xy=x^3-x^2+76 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z+76z3y^2z+xyz=x^3-x^2z+76z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x33x+4862y^2=x^3-3x+4862 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, 0, 76])
 
gp: E = ellinit([1, -1, 0, 0, 76])
 
magma: E := EllipticCurve([1, -1, 0, 0, 76]);
 
oscar: E = elliptic_curve([1, -1, 0, 0, 76])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2,8)(2, 8)0.491221225576148111170580369790.49122122557614811117058036979\infty
(4,2)(-4, 2)0022

Integral points

(4,2) \left(-4, 2\right) , (3,8) \left(-3, 8\right) , (3,5) \left(-3, -5\right) , (2,8) \left(2, 8\right) , (2,10) \left(2, -10\right) , (5,11) \left(5, 11\right) , (5,16) \left(5, -16\right) , (50,326) \left(50, 326\right) , (50,376) \left(50, -376\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  1710 1710  = 2325192 \cdot 3^{2} \cdot 5 \cdot 19
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  2493180-2493180 = 12238519-1 \cdot 2^{2} \cdot 3^{8} \cdot 5 \cdot 19
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13420 -\frac{1}{3420}  = 1223251191-1 \cdot 2^{-2} \cdot 3^{-2} \cdot 5^{-1} \cdot 19^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.093694389129020231152863024673-0.093694389129020231152863024673
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.64300053346307507685048564313-0.64300053346307507685048564313
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.10256349622003661.1025634962200366
Szpiro ratio: σm\sigma_{m} ≈ 2.9799904228267172.979990422826717

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.491221225576148111170580369790.49122122557614811117058036979
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 2.04621660237066200169822377022.0462166023706620016982237702
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 22211 2\cdot2^{2}\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.01029005442155664607378595902.0102900544215566460737859590
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.010290054L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor212.0462170.4912218222.010290054\displaystyle 2.010290054 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.046217 \cdot 0.491221 \cdot 8}{2^2} \approx 2.010290054

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1710.2.a.c

qq2+q4q52q7q8+q10+6q13+2q14+q168q17+q19+O(q20) q - q^{2} + q^{4} - q^{5} - 2 q^{7} - q^{8} + q^{10} + 6 q^{13} + 2 q^{14} + q^{16} - 8 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 384
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I2I_{2} nonsplit multiplicative 1 1 2 2
33 44 I2I_{2}^{*} additive -1 2 8 2
55 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1919 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[914, 1, 1823, 0], [1, 2, 2, 5], [761, 4, 1522, 9], [289, 1996, 1424, 855], [1562, 1, 359, 0], [1, 4, 0, 1], [2277, 4, 2276, 5], [1141, 4, 2, 9], [1, 0, 4, 1], [3, 4, 8, 11]]
 
GL(2,Integers(2280)).subgroup(gens)
 
Gens := [[914, 1, 1823, 0], [1, 2, 2, 5], [761, 4, 1522, 9], [289, 1996, 1424, 855], [1562, 1, 359, 0], [1, 4, 0, 1], [2277, 4, 2276, 5], [1141, 4, 2, 9], [1, 0, 4, 1], [3, 4, 8, 11]];
 
sub<GL(2,Integers(2280))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2280=233519 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 , index 1212, genus 00, and generators

(914118230),(1225),(761415229),(28919961424855),(156213590),(1401),(2277422765),(1141429),(1041),(34811)\left(\begin{array}{rr} 914 & 1 \\ 1823 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 761 & 4 \\ 1522 & 9 \end{array}\right),\left(\begin{array}{rr} 289 & 1996 \\ 1424 & 855 \end{array}\right),\left(\begin{array}{rr} 1562 & 1 \\ 359 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2277 & 4 \\ 2276 & 5 \end{array}\right),\left(\begin{array}{rr} 1141 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2280])K:=\Q(E[2280]) is a degree-363095654400363095654400 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2280Z)\GL_2(\Z/2280\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 855=32519 855 = 3^{2} \cdot 5 \cdot 19
33 additive 88 190=2519 190 = 2 \cdot 5 \cdot 19
55 nonsplit multiplicative 66 342=23219 342 = 2 \cdot 3^{2} \cdot 19
1919 split multiplicative 2020 90=2325 90 = 2 \cdot 3^{2} \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 1710f consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 570h1, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(95)\Q(\sqrt{-95}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.2.54720.2 Z/4Z\Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.27023362560000.4 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.2.230859741870000.3 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit add nonsplit ord ss ord ord split ord ord ord ord ord ord ord
λ\lambda-invariant(s) 2 - 1 1 1,1 1 1 2 1 3 1 1 1 1 1
μ\mu-invariant(s) 0 - 0 0 0,0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.