Properties

Label 171b3
Conductor 171171
Discriminant 13851-13851
j-invariant 5035787105075219 -\frac{50357871050752}{19}
CM no
Rank 11
Torsion structure Z/3Z\Z/{3}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x36924x+221760y^2+y=x^3-6924x+221760 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x36924xz2+221760z3y^2z+yz^2=x^3-6924xz^2+221760z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3110784x+14192656y^2=x^3-110784x+14192656 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 1, -6924, 221760])
 
gp: E = ellinit([0, 0, 1, -6924, 221760])
 
magma: E := EllipticCurve([0, 0, 1, -6924, 221760]);
 
oscar: E = elliptic_curve([0, 0, 1, -6924, 221760])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/3Z\Z \oplus \Z/{3}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(62,175)(62, 175)2.03370181943125390876103638402.0337018194312539087610363840\infty
(48,0)(48, 0)0033

Integral points

(48,0) \left(48, 0\right) , (48,1) \left(48, -1\right) , (62,175) \left(62, 175\right) , (62,176) \left(62, -176\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  171 171  = 32193^{2} \cdot 19
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  13851-13851 = 13619-1 \cdot 3^{6} \cdot 19
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  5035787105075219 -\frac{50357871050752}{19}  = 12181915773-1 \cdot 2^{18} \cdot 19^{-1} \cdot 577^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.582745301325372649217717502050.58274530132537264921771750205
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.0334391569913178035200948835890.033439156991317803520094883589
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.1049470994824951.104947099482495
Szpiro ratio: σm\sigma_{m} ≈ 7.4181924513567147.418192451356714

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.03370181943125390876103638402.0337018194312539087610363840
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 2.38277790332840520419754926162.3827779033284052041975492616
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 21 2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 33
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 1.07685772384434802281453866661.0768577238443480228145386666
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.076857724L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor212.3827782.0337022321.076857724\displaystyle 1.076857724 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.382778 \cdot 2.033702 \cdot 2}{3^2} \approx 1.076857724

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   171.2.a.b

q2q43q5q73q114q13+4q16+3q17+q19+O(q20) q - 2 q^{4} - 3 q^{5} - q^{7} - 3 q^{11} - 4 q^{13} + 4 q^{16} + 3 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 72
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 I0I_0^{*} additive -1 2 6 0
1919 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B.1.1 27.72.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[31, 36, 334, 421], [89, 951, 399, 934], [1, 54, 0, 1], [973, 54, 972, 55], [1, 0, 54, 1], [28, 27, 729, 703], [70, 45, 385, 472]]
 
GL(2,Integers(1026)).subgroup(gens)
 
Gens := [[31, 36, 334, 421], [89, 951, 399, 934], [1, 54, 0, 1], [973, 54, 972, 55], [1, 0, 54, 1], [28, 27, 729, 703], [70, 45, 385, 472]];
 
sub<GL(2,Integers(1026))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1026=23319 1026 = 2 \cdot 3^{3} \cdot 19 , index 12961296, genus 4343, and generators

(3136334421),(89951399934),(15401),(9735497255),(10541),(2827729703),(7045385472)\left(\begin{array}{rr} 31 & 36 \\ 334 & 421 \end{array}\right),\left(\begin{array}{rr} 89 & 951 \\ 399 & 934 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 973 & 54 \\ 972 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right),\left(\begin{array}{rr} 70 & 45 \\ 385 & 472 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1026])K:=\Q(E[1026]) is a degree-179508960179508960 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1026Z)\GL_2(\Z/1026\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
33 additive 22 19 19
1919 split multiplicative 2020 9=32 9 = 3^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3 and 9.
Its isogeny class 171b consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 19a2, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/3Z\cong \Z/{3}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.76.1 Z/6Z\Z/6\Z not in database
33 3.3.29241.2 Z/9Z\Z/9\Z not in database
66 6.0.109744.2 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.3518667.2 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.7105563.2 Z/9Z\Z/9\Z not in database
99 9.3.30402565814137536.8 Z/18Z\Z/18\Z not in database
1212 deg 12 Z/12Z\Z/12\Z not in database
1818 18.0.16877848680315122776257224907.2 Z/3ZZ/9Z\Z/3\Z \oplus \Z/9\Z not in database
1818 18.0.64417171850299425397321728.2 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1818 18.0.191500465912938345959971172352.1 Z/18Z\Z/18\Z not in database
1818 18.0.17562004153576323166412542958874624.1 Z/2ZZ/18Z\Z/2\Z \oplus \Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss add ord ord ord ord ord split ss ord ord ord ord ord ord
λ\lambda-invariant(s) 2,5 - 1 1 1 1 1 2 1,1 1 1 1 1 1 1
μ\mu-invariant(s) 0,0 - 0 0 0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.