Properties

Label 1728.x1
Conductor $1728$
Discriminant $-1259712$
j-invariant \( -13824 \)
CM no
Rank $0$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2=x^3-54x+162\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z=x^3-54xz^2+162z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-54x+162\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -54, 162])
 
gp: E = ellinit([0, 0, 0, -54, 162])
 
magma: E := EllipticCurve([0, 0, 0, -54, 162]);
 
oscar: E = elliptic_curve([0, 0, 0, -54, 162])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: \( 1728 \)  =  $2^{6} \cdot 3^{3}$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $-1259712 $  =  $-1 \cdot 2^{6} \cdot 3^{9} $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: \( -13824 \)  =  $-1 \cdot 2^{9} \cdot 3^{3}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $-0.079872223891064687667185569069\dots$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $-1.2504050306721196109222355575\dots$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $1.2262943855309167\dots$
Szpiro ratio: $3.1789709565273077\dots$

BSD invariants

Analytic rank: $0$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Regulator: $1$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $2.6757106733798058445825143103\dots$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $ 1 $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $1$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Analytic order of Ш: $1$ ( exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Special value: $ L(E,1) $ ≈ $ 2.6757106733798058445825143103 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

BSD formula

$\displaystyle 2.675710673 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.675711 \cdot 1.000000 \cdot 1}{1^2} \approx 2.675710673$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1728.2.a.x

\( q + 2 q^{5} + 3 q^{7} + 6 q^{11} + 3 q^{13} + 2 q^{17} + 3 q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 288
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data

This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $v_p(N)$ $v_p(\Delta)$ $v_p(\mathrm{den}(j))$
$2$ $1$ $II$ additive -1 6 6 0
$3$ $1$ $IV^{*}$ additive 1 3 9 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3Nn 3.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[14, 19, 17, 14], [13, 12, 12, 13], [7, 0, 6, 7], [3, 4, 8, 3], [4, 9, 3, 7], [11, 0, 0, 23], [1, 0, 12, 1], [5, 0, 0, 5], [23, 18, 18, 23], [1, 12, 0, 1], [19, 19, 13, 14]]
 
GL(2,Integers(24)).subgroup(gens)
 
Gens := [[14, 19, 17, 14], [13, 12, 12, 13], [7, 0, 6, 7], [3, 4, 8, 3], [4, 9, 3, 7], [11, 0, 0, 23], [1, 0, 12, 1], [5, 0, 0, 5], [23, 18, 18, 23], [1, 12, 0, 1], [19, 19, 13, 14]];
 
sub<GL(2,Integers(24))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 24.24.1-12.g.1.1, level \( 24 = 2^{3} \cdot 3 \), index $24$, genus $1$, and generators

$\left(\begin{array}{rr} 14 & 19 \\ 17 & 14 \end{array}\right),\left(\begin{array}{rr} 13 & 12 \\ 12 & 13 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 6 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 3 \end{array}\right),\left(\begin{array}{rr} 4 & 9 \\ 3 & 7 \end{array}\right),\left(\begin{array}{rr} 11 & 0 \\ 0 & 23 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 18 & 23 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 19 & 19 \\ 13 & 14 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[24])$ is a degree-$3072$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/24\Z)$.

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ additive $2$ \( 27 = 3^{3} \)
$3$ additive $2$ \( 32 = 2^{5} \)

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 1728.x consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 864.a1, its twist by $-8$.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$3$ 3.1.108.1 \(\Z/2\Z\) not in database
$6$ 6.0.34992.1 \(\Z/2\Z \oplus \Z/2\Z\) not in database
$8$ 8.2.573308928.1 \(\Z/3\Z\) not in database
$12$ 12.2.3851755393646592.8 \(\Z/4\Z\) not in database
$16$ 16.0.328683126924509184.1 \(\Z/3\Z \oplus \Z/3\Z\) not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add ord ord ord ord ord ord ord ord ss ord ord ord ord
$\lambda$-invariant(s) - - 0 0 0 0 0 0 0 0 0,0 0 0 0 0
$\mu$-invariant(s) - - 0 0 0 0 0 0 0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

$p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.