Properties

Label 1728.y
Number of curves 33
Conductor 17281728
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("y1")
 
E.isogeny_class()
 

Elliptic curves in class 1728.y

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1728.y1 1728j2 [0,0,0,1836,30672][0, 0, 0, -1836, -30672] 132651/2-132651/2 10319560704-10319560704 [][] 11521152 0.724520.72452  
1728.y2 1728j3 [0,0,0,876,13232][0, 0, 0, -876, 13232] 1167051/512-1167051/512 32614907904-32614907904 [][] 11521152 0.724520.72452  
1728.y3 1728j1 [0,0,0,84,208][0, 0, 0, 84, -208] 9261/89261/8 56623104-56623104 [][] 384384 0.175210.17521 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1728.y have rank 00.

Complex multiplication

The elliptic curves in class 1728.y do not have complex multiplication.

Modular form 1728.2.a.y

sage: E.q_eigenform(10)
 
q+3q5q73q11+4q132q19+O(q20)q + 3 q^{5} - q^{7} - 3 q^{11} + 4 q^{13} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(193913331)\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.