Show commands:
SageMath
E = EllipticCurve("y1")
E.isogeny_class()
Elliptic curves in class 1728.y
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1728.y1 | 1728j2 | \([0, 0, 0, -1836, -30672]\) | \(-132651/2\) | \(-10319560704\) | \([]\) | \(1152\) | \(0.72452\) | |
1728.y2 | 1728j3 | \([0, 0, 0, -876, 13232]\) | \(-1167051/512\) | \(-32614907904\) | \([]\) | \(1152\) | \(0.72452\) | |
1728.y3 | 1728j1 | \([0, 0, 0, 84, -208]\) | \(9261/8\) | \(-56623104\) | \([]\) | \(384\) | \(0.17521\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1728.y have rank \(0\).
Complex multiplication
The elliptic curves in class 1728.y do not have complex multiplication.Modular form 1728.2.a.y
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.