Properties

Label 1728.y
Number of curves $3$
Conductor $1728$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("y1")
 
E.isogeny_class()
 

Elliptic curves in class 1728.y

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1728.y1 1728j2 \([0, 0, 0, -1836, -30672]\) \(-132651/2\) \(-10319560704\) \([]\) \(1152\) \(0.72452\)  
1728.y2 1728j3 \([0, 0, 0, -876, 13232]\) \(-1167051/512\) \(-32614907904\) \([]\) \(1152\) \(0.72452\)  
1728.y3 1728j1 \([0, 0, 0, 84, -208]\) \(9261/8\) \(-56623104\) \([]\) \(384\) \(0.17521\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1728.y have rank \(0\).

Complex multiplication

The elliptic curves in class 1728.y do not have complex multiplication.

Modular form 1728.2.a.y

sage: E.q_eigenform(10)
 
\(q + 3 q^{5} - q^{7} - 3 q^{11} + 4 q^{13} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.