Properties

Label 1728a1
Conductor 17281728
Discriminant 1728-1728
j-invariant 0 0
CM yes (D=3D=-3)
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+2y^2=x^3+2 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+2z3y^2z=x^3+2z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+2y^2=x^3+2 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, 0, 2])
 
gp: E = ellinit([0, 0, 0, 0, 2])
 
magma: E := EllipticCurve([0, 0, 0, 0, 2]);
 
oscar: E = elliptic_curve([0, 0, 0, 0, 2])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1,1)(-1, 1)0.754576903181227264422071178460.75457690318122726442207117846\infty

Integral points

(1,±1)(-1,\pm 1) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  1728 1728  = 26332^{6} \cdot 3^{3}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  1728-1728 = 12633-1 \cdot 2^{6} \cdot 3^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  0 0  = 00
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z[(1+3)/2]\Z[(1+\sqrt{-3})/2]    (potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = N(U(1))N(\mathrm{U}(1))
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.69989076598103783743244182590-0.69989076598103783743244182590
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.3211174284280379149898691959-1.3211174284280379149898691959
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 
Szpiro ratio: σm\sigma_{m} ≈ 2.02.0

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.754576903181227264422071178460.75457690318122726442207117846
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 3.74760672070130830748706766513.7476067207013083074870676651
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.82785747364794772483423028202.8278574736479477248342302820
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.827857474L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor213.7476070.7545771122.827857474\displaystyle 2.827857474 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.747607 \cdot 0.754577 \cdot 1}{1^2} \approx 2.827857474

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1728.2.a.n

qq75q13+7q19+O(q20) q - q^{7} - 5 q^{13} + 7 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 48
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII additive 1 6 6 0
33 11 IIII additive 1 3 3 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Cs 27.972.55.16

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 27=33 27 = 3^{3}
33 additive 22 64=26 64 = 2^{6}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3 and 9.
Its isogeny class 1728a consists of 4 curves linked by isogenies of degrees dividing 27.

Twists

The minimal quadratic twist of this elliptic curve is 27a3, its twist by 88.

The minimal sextic twist of this elliptic curve is 27.a4, its sextic twist by 88.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(2)\Q(\sqrt{2}) Z/3Z\Z/3\Z 2.2.8.1-729.1-d3
22 Q(6)\Q(\sqrt{-6}) Z/3Z\Z/3\Z not in database
33 3.1.108.1 Z/2Z\Z/2\Z not in database
44 Q(2,3)\Q(\sqrt{2}, \sqrt{-3}) Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.34992.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.6.3359232.1 Z/9Z\Z/9\Z not in database
66 6.2.1492992.4 Z/6Z\Z/6\Z not in database
66 6.0.4478976.2 Z/6Z\Z/6\Z not in database
1212 12.2.962938848411648.4 Z/4Z\Z/4\Z not in database
1212 12.0.101559956668416.2 Z/3ZZ/9Z\Z/3\Z \oplus \Z/9\Z not in database
1212 deg 12 Z/7Z\Z/7\Z not in database
1212 12.0.20061226008576.9 Z/6ZZ/6Z\Z/6\Z \oplus \Z/6\Z not in database
1818 18.0.543924745232899335442661376.1 Z/9Z\Z/9\Z not in database
1818 18.6.1768591357765866863198208.1 Z/18Z\Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add ss ord ss ord ss ord ss ss ord ord ss ord ss
λ\lambda-invariant(s) - - 1,1 1 1,1 1 1,1 1 1,1 1,1 1 1 1,1 1 1,1
μ\mu-invariant(s) - - 0,0 0 0,0 0 0,0 0 0,0 0,0 0 0 0,0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.