Properties

Label 1728r1
Conductor 17281728
Discriminant 1728-1728
j-invariant 13824 -13824
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x36x6y^2=x^3-6x-6 Copy content Toggle raw display (homogenize, simplify)
y2z=x36xz26z3y^2z=x^3-6xz^2-6z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x36x6y^2=x^3-6x-6 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -6, -6])
 
gp: E = ellinit([0, 0, 0, -6, -6])
 
magma: E := EllipticCurve([0, 0, 0, -6, -6]);
 
oscar: E = elliptic_curve([0, 0, 0, -6, -6])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  1728 1728  = 26332^{6} \cdot 3^{3}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  1728-1728 = 12633-1 \cdot 2^{6} \cdot 3^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13824 -13824  = 12933-1 \cdot 2^{9} \cdot 3^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.62917836822511953336480818753-0.62917836822511953336480818753
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.2504050306721196109222355575-1.2504050306721196109222355575
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.22629438553091671.2262943855309167
Szpiro ratio: σm\sigma_{m} ≈ 2.29474273913182672.2947427391318267

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.51889448132905096249561644841.5188944813290509624956164484
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.51889448132905096249561644831.5188944813290509624956164483
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.518894481L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.5188941.0000001121.518894481\displaystyle 1.518894481 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.518894 \cdot 1.000000 \cdot 1}{1^2} \approx 1.518894481

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1728.2.a.h

q2q5+3q76q11+3q132q17+3q19+O(q20) q - 2 q^{5} + 3 q^{7} - 6 q^{11} + 3 q^{13} - 2 q^{17} + 3 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 96
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII additive -1 6 6 0
33 11 IIII additive 1 3 3 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Nn 3.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[7, 0, 6, 7], [13, 12, 12, 13], [10, 5, 7, 10], [3, 4, 8, 3], [4, 9, 3, 7], [11, 0, 0, 23], [1, 0, 12, 1], [5, 0, 0, 5], [1, 12, 0, 1], [23, 18, 18, 23], [19, 19, 13, 14]]
 
GL(2,Integers(24)).subgroup(gens)
 
Gens := [[7, 0, 6, 7], [13, 12, 12, 13], [10, 5, 7, 10], [3, 4, 8, 3], [4, 9, 3, 7], [11, 0, 0, 23], [1, 0, 12, 1], [5, 0, 0, 5], [1, 12, 0, 1], [23, 18, 18, 23], [19, 19, 13, 14]];
 
sub<GL(2,Integers(24))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has label 24.24.1-12.g.1.1, level 24=233 24 = 2^{3} \cdot 3 , index 2424, genus 11, and generators

(7067),(13121213),(105710),(3483),(4937),(110023),(10121),(5005),(11201),(23181823),(19191314)\left(\begin{array}{rr} 7 & 0 \\ 6 & 7 \end{array}\right),\left(\begin{array}{rr} 13 & 12 \\ 12 & 13 \end{array}\right),\left(\begin{array}{rr} 10 & 5 \\ 7 & 10 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 3 \end{array}\right),\left(\begin{array}{rr} 4 & 9 \\ 3 & 7 \end{array}\right),\left(\begin{array}{rr} 11 & 0 \\ 0 & 23 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 18 & 23 \end{array}\right),\left(\begin{array}{rr} 19 & 19 \\ 13 & 14 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[24])K:=\Q(E[24]) is a degree-30723072 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/24Z)\GL_2(\Z/24\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 27=33 27 = 3^{3}
33 additive 66 64=26 64 = 2^{6}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 1728r consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 864i1, its twist by 2424.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.108.1 Z/2Z\Z/2\Z not in database
66 6.0.34992.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.573308928.1 Z/3Z\Z/3\Z not in database
1212 12.2.3851755393646592.8 Z/4Z\Z/4\Z not in database
1616 16.0.328683126924509184.1 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add ord ord ord ord ord ord ord ord ss ord ord ord ord
λ\lambda-invariant(s) - - 0 0 0 0 0 0 0 0 0,0 0 0 0 0
μ\mu-invariant(s) - - 0 0 0 0 0 0 0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.