Properties

Label 1728y1
Conductor 17281728
Discriminant 644972544-644972544
j-invariant 216 -216
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3108x+1296y^2=x^3-108x+1296 Copy content Toggle raw display (homogenize, simplify)
y2z=x3108xz2+1296z3y^2z=x^3-108xz^2+1296z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3108x+1296y^2=x^3-108x+1296 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -108, 1296])
 
gp: E = ellinit([0, 0, 0, -108, 1296])
 
magma: E := EllipticCurve([0, 0, 0, -108, 1296]);
 
oscar: E = elliptic_curve([0, 0, 0, -108, 1296])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(18,72)(18, 72)0.170724129021469540956776459670.17072412902146954095677645967\infty

Integral points

(14,±8)(-14,\pm 8), (0,±36)(0,\pm 36), (18,±72)(18,\pm 72), (928,±28268)(928,\pm 28268) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  1728 1728  = 26332^{6} \cdot 3^{3}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  644972544-644972544 = 121539-1 \cdot 2^{15} \cdot 3^{9}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  216 -216  = 12333-1 \cdot 2^{3} \cdot 3^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.375104164190928236964856104540.37510416419092823696485610454
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.3152890280100856683531179750-1.3152890280100856683531179750
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.22629438553091671.2262943855309167
Szpiro ratio: σm\sigma_{m} ≈ 3.73685684782956743.7368568478295674

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.170724129021469540956776459670.17072412902146954095677645967
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.40761327566833677848451935901.4076132756683367784845193590
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 12 12  = 223 2^{2}\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.88376260585041400310438964672.8837626058504140031043896467
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.883762606L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.4076130.17072412122.883762606\displaystyle 2.883762606 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.407613 \cdot 0.170724 \cdot 12}{1^2} \approx 2.883762606

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1728.2.a.k

qq5+3q73q114q176q19+O(q20) q - q^{5} + 3 q^{7} - 3 q^{11} - 4 q^{17} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 576
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I5I_{5}^{*} additive -1 6 15 0
33 33 IVIV^{*} additive -1 3 9 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Nn 9.9.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[53, 28, 53, 17], [35, 54, 27, 53], [1, 18, 0, 1], [3, 16, 50, 51], [5, 18, 36, 29], [12, 11, 49, 51], [55, 18, 54, 19], [1, 0, 18, 1], [17, 68, 26, 31]]
 
GL(2,Integers(72)).subgroup(gens)
 
Gens := [[53, 28, 53, 17], [35, 54, 27, 53], [1, 18, 0, 1], [3, 16, 50, 51], [5, 18, 36, 29], [12, 11, 49, 51], [55, 18, 54, 19], [1, 0, 18, 1], [17, 68, 26, 31]];
 
sub<GL(2,Integers(72))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 72=2332 72 = 2^{3} \cdot 3^{2} , index 3636, genus 33, and generators

(53285317),(35542753),(11801),(3165051),(5183629),(12114951),(55185419),(10181),(17682631)\left(\begin{array}{rr} 53 & 28 \\ 53 & 17 \end{array}\right),\left(\begin{array}{rr} 35 & 54 \\ 27 & 53 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 16 \\ 50 & 51 \end{array}\right),\left(\begin{array}{rr} 5 & 18 \\ 36 & 29 \end{array}\right),\left(\begin{array}{rr} 12 & 11 \\ 49 & 51 \end{array}\right),\left(\begin{array}{rr} 55 & 18 \\ 54 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 17 & 68 \\ 26 & 31 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[72])K:=\Q(E[72]) is a degree-165888165888 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/72Z)\GL_2(\Z/72\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 27=33 27 = 3^{3}
33 additive 22 32=25 32 = 2^{5}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 1728y consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 864a1, its twist by 2424.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.216.1 Z/2Z\Z/2\Z not in database
66 6.0.1119744.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.573308928.1 Z/3Z\Z/3\Z not in database
1212 12.2.1925877696823296.2 Z/4Z\Z/4\Z not in database
1616 16.0.328683126924509184.1 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add ord ord ord ss ord ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) - - 3 1 1 1,1 1 1 1 1 1 1 3 1 1
μ\mu-invariant(s) - - 0 0 0 0,0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.