Properties

Label 17328bf
Number of curves $2$
Conductor $17328$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bf1")
 
E.isogeny_class()
 

Elliptic curves in class 17328bf

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17328.bc2 17328bf1 \([0, 1, 0, 113595, -16793613]\) \(841232384/1121931\) \(-216196023567200256\) \([]\) \(172800\) \(2.0121\) \(\Gamma_0(N)\)-optimal
17328.bc1 17328bf2 \([0, 1, 0, -25358565, -49159868013]\) \(-9358714467168256/22284891\) \(-4294296904023945216\) \([]\) \(864000\) \(2.8168\)  

Rank

sage: E.rank()
 

The elliptic curves in class 17328bf have rank \(0\).

Complex multiplication

The elliptic curves in class 17328bf do not have complex multiplication.

Modular form 17328.2.a.bf

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 3 q^{7} + q^{9} + 3 q^{11} + 6 q^{13} + q^{15} + 3 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.