Properties

Label 17328bg2
Conductor 1732817328
Discriminant 6.261×10146.261\times 10^{14}
j-invariant 306642973249 \frac{30664297}{3249}
CM no
Rank 00
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x237664x+2530356y^2=x^3+x^2-37664x+2530356 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z37664xz2+2530356z3y^2z=x^3+x^2z-37664xz^2+2530356z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x33050811x+1853781930y^2=x^3-3050811x+1853781930 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, -37664, 2530356])
 
gp: E = ellinit([0, 1, 0, -37664, 2530356])
 
magma: E := EllipticCurve([0, 1, 0, -37664, 2530356]);
 
oscar: E = elliptic_curve([0, 1, 0, -37664, 2530356])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(82,0)(82, 0)0022
(139,0)(139, 0)0022

Integral points

(222,0) \left(-222, 0\right) , (82,0) \left(82, 0\right) , (139,0) \left(139, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  17328 17328  = 2431922^{4} \cdot 3 \cdot 19^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  626082067943424626082067943424 = 212321982^{12} \cdot 3^{2} \cdot 19^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  306642973249 \frac{30664297}{3249}  = 3219231333^{-2} \cdot 19^{-2} \cdot 313^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.57378441766036679104369740681.5737844176603667910436974068
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.59158225248279874837804843060-0.59158225248279874837804843060
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.90726686079402850.9072668607940285
Szpiro ratio: σm\sigma_{m} ≈ 4.4285512186486674.428551218648667

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.497970834527352974720452684290.49797083452735297472045268429
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 32 32  = 22222 2^{2}\cdot2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.995941669054705949440905368580.99594166905470594944090536858
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.995941669L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.4979711.00000032420.995941669\displaystyle 0.995941669 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.497971 \cdot 1.000000 \cdot 32}{4^2} \approx 0.995941669

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   17328.2.a.u

q+q32q5+q96q132q156q17+O(q20) q + q^{3} - 2 q^{5} + q^{9} - 6 q^{13} - 2 q^{15} - 6 q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 69120
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I4I_{4}^{*} additive -1 4 12 0
33 22 I2I_{2} split multiplicative -1 1 2 2
1919 44 I2I_{2}^{*} additive -1 2 8 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 4.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[111, 224, 226, 225], [225, 4, 224, 5], [165, 226, 194, 1], [1, 4, 0, 1], [77, 2, 0, 1], [1, 0, 4, 1]]
 
GL(2,Integers(228)).subgroup(gens)
 
Gens := [[111, 224, 226, 225], [225, 4, 224, 5], [165, 226, 194, 1], [1, 4, 0, 1], [77, 2, 0, 1], [1, 0, 4, 1]];
 
sub<GL(2,Integers(228))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 228=22319 228 = 2^{2} \cdot 3 \cdot 19 , index 4848, genus 00, and generators

(111224226225),(22542245),(1652261941),(1401),(77201),(1041)\left(\begin{array}{rr} 111 & 224 \\ 226 & 225 \end{array}\right),\left(\begin{array}{rr} 225 & 4 \\ 224 & 5 \end{array}\right),\left(\begin{array}{rr} 165 & 226 \\ 194 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 77 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[228])K:=\Q(E[228]) is a degree-1181952011819520 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/228Z)\GL_2(\Z/228\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 361=192 361 = 19^{2}
33 split multiplicative 44 5776=24192 5776 = 2^{4} \cdot 19^{2}
1919 additive 200200 48=243 48 = 2^{4} \cdot 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 17328bg consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 57b1, its twist by 7676.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(57)\Q(\sqrt{57}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(3,19)\Q(\sqrt{-3}, \sqrt{19}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(i,19)\Q(i, \sqrt{19}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.2702336256.1 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 8.4.561912991727616.28 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 deg 8 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 19
Reduction type add split add
λ\lambda-invariant(s) - 5 -
μ\mu-invariant(s) - 0 -

All Iwasawa λ\lambda and μ\mu-invariants for primes p3p\ge 3 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.