Properties

Label 17328v3
Conductor 1732817328
Discriminant 3.163×10153.163\times 10^{15}
j-invariant 7422021981668221747316416 \frac{74220219816682217473}{16416}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x2505700472x4376948403600y^2=x^3-x^2-505700472x-4376948403600 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z505700472xz24376948403600z3y^2z=x^3-x^2z-505700472xz^2-4376948403600z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x340961738259x3190918271439150y^2=x^3-40961738259x-3190918271439150 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -505700472, -4376948403600])
 
gp: E = ellinit([0, -1, 0, -505700472, -4376948403600])
 
magma: E := EllipticCurve([0, -1, 0, -505700472, -4376948403600]);
 
oscar: E = elliptic_curve([0, -1, 0, -505700472, -4376948403600])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(315160151366864644209233534289236194/11603283405822201412013565200625,54834231450575148095476362561651647559416643323579378/39524951871797843612810869181476316360712984375)(315160151366864644209233534289236194/11603283405822201412013565200625, 54834231450575148095476362561651647559416643323579378/39524951871797843612810869181476316360712984375)78.49149013003218397735962128678.491490130032183977359621286\infty
(12983,0)(-12983, 0)0022

Integral points

(12983,0) \left(-12983, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  17328 17328  = 2431922^{4} \cdot 3 \cdot 19^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  31633620275036163163362027503616 = 217331972^{17} \cdot 3^{3} \cdot 19^{7}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  7422021981668221747316416 \frac{74220219816682217473}{16416}  = 2533133191373873732^{-5} \cdot 3^{-3} \cdot 13^{3} \cdot 19^{-1} \cdot 37^{3} \cdot 8737^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 3.26680595365276013177649627963.2668059536527601317764962796
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.10143928350959459235475044221.1014392835095945923547504422
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.10905013148385351.1090501314838535
Szpiro ratio: σm\sigma_{m} ≈ 7.3501422026414187.350142202641418

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 78.49149013003218397735962128678.491490130032183977359621286
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0318365658346517801515320684050.031836565834651780151532068405
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 2122 2\cdot1\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.99779898596938008212987955404.9977989859693800821298795540
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.997798986L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.03183778.4914908224.997798986\displaystyle 4.997798986 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.031837 \cdot 78.491490 \cdot 8}{2^2} \approx 4.997798986

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   17328.2.a.o

qq3+2q5+q9+4q112q132q156q17+O(q20) q - q^{3} + 2 q^{5} + q^{9} + 4 q^{11} - 2 q^{13} - 2 q^{15} - 6 q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2073600
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I9I_{9}^{*} additive -1 4 17 5
33 11 I3I_{3} nonsplit multiplicative 1 1 3 3
1919 44 I1I_{1}^{*} additive -1 2 7 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.12.0.11

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[160, 3, 157, 2], [449, 8, 448, 9], [1, 0, 8, 1], [136, 453, 427, 454], [1, 8, 0, 1], [1, 4, 4, 17], [7, 6, 450, 451], [288, 65, 163, 150], [277, 284, 238, 51]]
 
GL(2,Integers(456)).subgroup(gens)
 
Gens := [[160, 3, 157, 2], [449, 8, 448, 9], [1, 0, 8, 1], [136, 453, 427, 454], [1, 8, 0, 1], [1, 4, 4, 17], [7, 6, 450, 451], [288, 65, 163, 150], [277, 284, 238, 51]];
 
sub<GL(2,Integers(456))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 456=23319 456 = 2^{3} \cdot 3 \cdot 19 , index 4848, genus 00, and generators

(16031572),(44984489),(1081),(136453427454),(1801),(14417),(76450451),(28865163150),(27728423851)\left(\begin{array}{rr} 160 & 3 \\ 157 & 2 \end{array}\right),\left(\begin{array}{rr} 449 & 8 \\ 448 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 136 & 453 \\ 427 & 454 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 450 & 451 \end{array}\right),\left(\begin{array}{rr} 288 & 65 \\ 163 & 150 \end{array}\right),\left(\begin{array}{rr} 277 & 284 \\ 238 & 51 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[456])K:=\Q(E[456]) is a degree-189112320189112320 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/456Z)\GL_2(\Z/456\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 1083=3192 1083 = 3 \cdot 19^{2}
33 nonsplit multiplicative 44 5776=24192 5776 = 2^{4} \cdot 19^{2}
1919 additive 200200 48=243 48 = 2^{4} \cdot 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 17328v consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 114c3, its twist by 7676.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(114)\Q(\sqrt{114}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(38)\Q(\sqrt{-38}) Z/4Z\Z/4\Z not in database
22 Q(3)\Q(\sqrt{-3}) Z/4Z\Z/4\Z not in database
44 Q(3,38)\Q(\sqrt{-3}, \sqrt{-38}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.19677812097024.7 Z/8Z\Z/8\Z not in database
88 8.0.2194972623936.3 Z/8Z\Z/8\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add nonsplit ord ss ord ord ord add ord ord ord ord ord ord ord
λ\lambda-invariant(s) - 1 1 1,1 1 1 1 - 1 1 1 1 1 1 1
μ\mu-invariant(s) - 0 0 0,0 0 0 0 - 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.