Properties

Label 1740.e
Number of curves 22
Conductor 17401740
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Elliptic curves in class 1740.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1740.e1 1740e2 [0,1,0,486,20115][0, 1, 0, -486, -20115] 795070868224/10289109375-795070868224/10289109375 164625750000-164625750000 [][] 12961296 0.833930.83393  
1740.e2 1740e1 [0,1,0,54,729][0, 1, 0, 54, 729] 1068359936/142701751068359936/14270175 228322800-228322800 [3][3] 432432 0.284630.28463 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1740.e have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331T1 - T
551+T1 + T
29291+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+T+7T2 1 + T + 7 T^{2} 1.7.b
1111 1+3T+11T2 1 + 3 T + 11 T^{2} 1.11.d
1313 1+T+13T2 1 + T + 13 T^{2} 1.13.b
1717 13T+17T2 1 - 3 T + 17 T^{2} 1.17.ad
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 1+23T2 1 + 23 T^{2} 1.23.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1740.e do not have complex multiplication.

Modular form 1740.2.a.e

Copy content sage:E.q_eigenform(10)
 
q+q3q5q7+q93q11q13q15+3q174q19+O(q20)q + q^{3} - q^{5} - q^{7} + q^{9} - 3 q^{11} - q^{13} - q^{15} + 3 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.