sage:E = EllipticCurve("r1")
E.isogeny_class()
Elliptic curves in class 174240r
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
174240.g3 |
174240r1 |
[0,0,0,−33033,−2225432] |
48228544/2025 |
167374248782400 |
[2,2] |
737280 |
1.4940
|
Γ0(N)-optimal |
174240.g2 |
174240r2 |
[0,0,0,−87483,6998398] |
111980168/32805 |
21691702642199040 |
[2] |
1474560 |
1.8406
|
|
174240.g4 |
174240r3 |
[0,0,0,15972,−8262848] |
85184/5625 |
−29755422005760000 |
[2] |
1474560 |
1.8406
|
|
174240.g1 |
174240r4 |
[0,0,0,−523083,−145614062] |
23937672968/45 |
29755422005760 |
[2] |
1474560 |
1.8406
|
|
sage:E.rank()
The elliptic curves in class 174240r have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1+T |
11 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+2T+7T2 |
1.7.c
|
13 |
1−6T+13T2 |
1.13.ag
|
17 |
1+17T2 |
1.17.a
|
19 |
1+6T+19T2 |
1.19.g
|
23 |
1−8T+23T2 |
1.23.ai
|
29 |
1−4T+29T2 |
1.29.ae
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 174240r do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1222214424142441⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.