Properties

Label 175.c
Number of curves 22
Conductor 175175
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 175.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
175.c1 175c2 [0,1,1,3708,86119][0, 1, 1, -3708, 86119] 2887553024/16807-2887553024/16807 32826171875-32826171875 [][] 200200 0.858910.85891  
175.c2 175c1 [0,1,1,42,131][0, 1, 1, 42, -131] 4096/74096/7 13671875-13671875 [][] 4040 0.0541930.054193 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 175.c have rank 00.

Complex multiplication

The elliptic curves in class 175.c do not have complex multiplication.

Modular form 175.2.a.c

sage: E.q_eigenform(10)
 
q+2q2+q3+2q4+2q6q72q93q11+2q12+q132q144q16+7q174q18+O(q20)q + 2 q^{2} + q^{3} + 2 q^{4} + 2 q^{6} - q^{7} - 2 q^{9} - 3 q^{11} + 2 q^{12} + q^{13} - 2 q^{14} - 4 q^{16} + 7 q^{17} - 4 q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1551)\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.