Properties

Label 176400dw
Number of curves $8$
Conductor $176400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("dw1")
 
E.isogeny_class()
 

Elliptic curves in class 176400dw

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
176400.ci7 176400dw1 \([0, 0, 0, 37040325, -65382745750]\) \(1023887723039/928972800\) \(-5099161188512563200000000\) \([2]\) \(28311552\) \(3.4283\) \(\Gamma_0(N)\)-optimal
176400.ci6 176400dw2 \([0, 0, 0, -188751675, -585381721750]\) \(135487869158881/51438240000\) \(282346132215490560000000000\) \([2, 2]\) \(56623104\) \(3.7748\)  
176400.ci5 176400dw3 \([0, 0, 0, -1331823675, 18290166214250]\) \(47595748626367201/1215506250000\) \(6671952391280400000000000000\) \([2, 2]\) \(113246208\) \(4.1214\)  
176400.ci4 176400dw4 \([0, 0, 0, -2658351675, -52740864121750]\) \(378499465220294881/120530818800\) \(661597490523511987200000000\) \([2]\) \(113246208\) \(4.1214\)  
176400.ci2 176400dw5 \([0, 0, 0, -21176823675, 1186148571214250]\) \(191342053882402567201/129708022500\) \(711971452953966240000000000\) \([2, 2]\) \(226492416\) \(4.4680\)  
176400.ci8 176400dw6 \([0, 0, 0, 224024325, 58466829118250]\) \(226523624554079/269165039062500\) \(-1477455443789062500000000000000\) \([2]\) \(226492416\) \(4.4680\)  
176400.ci1 176400dw7 \([0, 0, 0, -338829123675, 75913534493914250]\) \(783736670177727068275201/360150\) \(1976874782601600000000\) \([2]\) \(452984832\) \(4.8146\)  
176400.ci3 176400dw8 \([0, 0, 0, -21044523675, 1201700568514250]\) \(-187778242790732059201/4984939585440150\) \(-27362491626403183562121600000000\) \([2]\) \(452984832\) \(4.8146\)  

Rank

sage: E.rank()
 

The elliptic curves in class 176400dw have rank \(0\).

Complex multiplication

The elliptic curves in class 176400dw do not have complex multiplication.

Modular form 176400.2.a.dw

sage: E.q_eigenform(10)
 
\(q - 4 q^{11} - 2 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 2 & 2 & 4 & 4 \\ 4 & 2 & 4 & 1 & 8 & 8 & 16 & 16 \\ 8 & 4 & 2 & 8 & 1 & 4 & 2 & 2 \\ 8 & 4 & 2 & 8 & 4 & 1 & 8 & 8 \\ 16 & 8 & 4 & 16 & 2 & 8 & 1 & 4 \\ 16 & 8 & 4 & 16 & 2 & 8 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.