Show commands:
SageMath
E = EllipticCurve("nz1")
E.isogeny_class()
Elliptic curves in class 176400nz
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
176400.by3 | 176400nz1 | \([0, 0, 0, -786450, 257292875]\) | \(2508888064/118125\) | \(2532780760781250000\) | \([2]\) | \(3538944\) | \(2.2921\) | \(\Gamma_0(N)\)-optimal |
176400.by2 | 176400nz2 | \([0, 0, 0, -2164575, -890685250]\) | \(3269383504/893025\) | \(306365160824100000000\) | \([2, 2]\) | \(7077888\) | \(2.6387\) | |
176400.by4 | 176400nz3 | \([0, 0, 0, 5552925, -5806732750]\) | \(13799183324/18600435\) | \(-25524594541802160000000\) | \([2]\) | \(14155776\) | \(2.9853\) | |
176400.by1 | 176400nz4 | \([0, 0, 0, -31932075, -69445237750]\) | \(2624033547076/324135\) | \(444796826085360000000\) | \([2]\) | \(14155776\) | \(2.9853\) |
Rank
sage: E.rank()
The elliptic curves in class 176400nz have rank \(1\).
Complex multiplication
The elliptic curves in class 176400nz do not have complex multiplication.Modular form 176400.2.a.nz
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.