Properties

Label 176400nz
Number of curves $4$
Conductor $176400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("nz1")
 
E.isogeny_class()
 

Elliptic curves in class 176400nz

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
176400.by3 176400nz1 \([0, 0, 0, -786450, 257292875]\) \(2508888064/118125\) \(2532780760781250000\) \([2]\) \(3538944\) \(2.2921\) \(\Gamma_0(N)\)-optimal
176400.by2 176400nz2 \([0, 0, 0, -2164575, -890685250]\) \(3269383504/893025\) \(306365160824100000000\) \([2, 2]\) \(7077888\) \(2.6387\)  
176400.by4 176400nz3 \([0, 0, 0, 5552925, -5806732750]\) \(13799183324/18600435\) \(-25524594541802160000000\) \([2]\) \(14155776\) \(2.9853\)  
176400.by1 176400nz4 \([0, 0, 0, -31932075, -69445237750]\) \(2624033547076/324135\) \(444796826085360000000\) \([2]\) \(14155776\) \(2.9853\)  

Rank

sage: E.rank()
 

The elliptic curves in class 176400nz have rank \(1\).

Complex multiplication

The elliptic curves in class 176400nz do not have complex multiplication.

Modular form 176400.2.a.nz

sage: E.q_eigenform(10)
 
\(q - 4 q^{11} - 6 q^{13} + 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.