sage:E = EllipticCurve("p1")
E.isogeny_class()
Elliptic curves in class 176400p
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
176400.ea2 |
176400p1 |
[0,0,0,294000,85750000] |
4096/7 |
−4802902776000000000 |
[] |
2304000 |
2.2696
|
Γ0(N)-optimal |
176400.ea1 |
176400p2 |
[0,0,0,−26166000,−51775850000] |
−2887553024/16807 |
−11531769565176000000000 |
[] |
11520000 |
3.0743
|
|
sage:E.rank()
The elliptic curves in class 176400p have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1 |
7 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1+6T+11T2 |
1.11.g
|
13 |
1−2T+13T2 |
1.13.ac
|
17 |
1+17T2 |
1.17.a
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1−6T+23T2 |
1.23.ag
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 176400p do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1551)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.