Properties

Label 176400p
Number of curves $2$
Conductor $176400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 176400p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
176400.ea2 176400p1 \([0, 0, 0, 294000, 85750000]\) \(4096/7\) \(-4802902776000000000\) \([]\) \(2304000\) \(2.2696\) \(\Gamma_0(N)\)-optimal
176400.ea1 176400p2 \([0, 0, 0, -26166000, -51775850000]\) \(-2887553024/16807\) \(-11531769565176000000000\) \([]\) \(11520000\) \(3.0743\)  

Rank

sage: E.rank()
 

The elliptic curves in class 176400p have rank \(1\).

Complex multiplication

The elliptic curves in class 176400p do not have complex multiplication.

Modular form 176400.2.a.p

sage: E.q_eigenform(10)
 
\(q - 3 q^{11} - q^{13} + 7 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.