Properties

Label 176400p
Number of curves 22
Conductor 176400176400
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 176400p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
176400.ea2 176400p1 [0,0,0,294000,85750000][0, 0, 0, 294000, 85750000] 4096/74096/7 4802902776000000000-4802902776000000000 [][] 23040002304000 2.26962.2696 Γ0(N)\Gamma_0(N)-optimal
176400.ea1 176400p2 [0,0,0,26166000,51775850000][0, 0, 0, -26166000, -51775850000] 2887553024/16807-2887553024/16807 11531769565176000000000-11531769565176000000000 [][] 1152000011520000 3.07433.0743  

Rank

sage: E.rank()
 

The elliptic curves in class 176400p have rank 11.

Complex multiplication

The elliptic curves in class 176400p do not have complex multiplication.

Modular form 176400.2.a.p

sage: E.q_eigenform(10)
 
q3q11q13+7q17+O(q20)q - 3 q^{11} - q^{13} + 7 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1551)\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.